Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers

More options …
Volume 68, Issue 8


Recent advances in application of liquid-based micro-extraction: A review

Yi He
  • Department of Sciences, John Jay College, The City University of New York, 524 W59th Street, New York, NY, 10019, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-04-15 | DOI: https://doi.org/10.2478/s11696-014-0562-6


Liquid-based micro-extraction is a novel “green” sample preparation technique using micro-litre levels of organic solvent to extract target analytes from various sample matrices for subsequent instrumental analysis. This technique developed rapidly from its introduction in the mid-1990s. Micro-extraction methods can be conveniently combined with a wide selection of instruments commonly used in a chemical laboratory; they significantly reduce analysis time and costs of solvents’ use and waste disposal. This review focuses on recent advances in several liquid-based micro-extraction methods, including single-drop micro-extraction, hollow fibre-liquid phase micro-extraction, and dispersive liquid-liquid micro-extraction. Examples of application of these methods to environmental, food, and biomedical analysis are listed.

Keywords: liquid-based micro-extraction; environmental analysis; food analysis; biomedical analysis

  • [1] Al Othman, Z. A., Yilmaz, E., Habila, M., & Soylak, M. (2013). Development of a dispersive liquid-liquid microextraction combined with flame atomic absorption spectrometry using a microinjection system for the enrichment, separation, and determination of nickel in water samples. Desalination and Water Treatment, 51, 6770–6776. DOI: 10.1080/19443994.2013.792447. CrossrefGoogle Scholar

  • [2] Amvrazi, E. G., & Tsiropoulos, N. G. (2009). Chemometric study and optimization of extraction parameters in singledrop microextraction for the determination of multiclass pesticide residues in grapes and apples by gas chromatography mass spectrometry. Journal of Chromatography A, 1216, 7630–7638. DOI: 10.1016/j.chroma.2009.08.092. CrossrefGoogle Scholar

  • [3] Anthemidis, A. N., & Ioannou, K. I. G. (2009). On-line sequential injection dispersive liquid-liquid microextraction system for flame atomic absorption spectrometric determination of copper and lead in water samples. Talanta, 79, 86–91. DOI: 10.1016/j.talanta.2009.03.005. CrossrefGoogle Scholar

  • [4] Anthemidis, A. N., & Ioannou, K. I. G. (2010). Development of a sequential injection dispersive liquid-liquid microextraction system for electrothermal atomic absorption spectrometry by using a hydrophobic sorbent material. Determination of lead and cadmium in natural waters. Analytica Chimica Acta, 668, 35–40. DOI: 10.1016/j.aca.2009.10.063. CrossrefGoogle Scholar

  • [5] Anthemidis, A. N., & Ioannou, K. I. G. (2012). Sequential injection ionic liquid dispersive liquid-liquid microextraction for thallium preconcentration and determination with flame atomic absorption spectrometry. Analytical & Bioanalytical Chemistry, 404, 685–691. DOI: 10.1007/s00216-011-5700-1. CrossrefGoogle Scholar

  • [6] Anthemidis, A. N., & Mitani, C. (2013). Advances in liquid phase micro-extraction techniques for metal, metalloid and organometallic species determination. Current Analytical Chemistry, 9, 250–278. DOI: 10.2174/157341113805219009. CrossrefGoogle Scholar

  • [7] Asensio-Ramos, M., Hernández-Borges, J., Borges-Miquel, T. M., & Rodríguez-Delgado, M. á. (2011). Ionic liquiddispersive liquid-liquid microextraction for the simultaneous determination of pesticides and metabolites in soils using high-performance liquid chromatography and fluorescence detection. Journal of Chromatography A, 1218, 4808–4816. DOI: 10.1016/j.chroma.2010.11.030. CrossrefGoogle Scholar

  • [8] Basheer, C., & Lee, H. K. (2004). Analysis of endocrine disrupting alkylphenols, chlorophenols and bisphenol-A using hollow fiber-protected liquid-phase microextraction coupled with injection port-derivatization gas chromatography-mass spectrometry. Journal of Chromatography A, 1057, 163–169. DOI: 10.1016/j.chroma.2004.09.083. CrossrefGoogle Scholar

  • [9] Chandrasekaran, K., Karunasagar, D., & Arunachalam, J. (2011). Dispersive liquid-liquid micro extraction of uranium(VI) from groundwater and seawater samples and determination by inductively coupled plasma-optical emission spectrometry and flow injection-inductively coupled plasma mass spectrometry. Analytical Methods, 3, 2140–2147. DOI: 10.1039/c1ay05329a. CrossrefGoogle Scholar

  • [10] Charalabaki, M., Psillakis, E., Mantzavinos, D., & Kalogerakis, N. (2005). Analysis of polycyclic aromatic hydrocarbons in wastewater treatment plant effluents using hollow fi-bre liquid-phase microextraction. Chemosphere, 60, 690–698. DOI: 10.1016/j.chemosphere.2005.01.040. CrossrefGoogle Scholar

  • [11] Chen, B. B., Huang, Y. L., He, M., & Hu, B. (2013). Hollow fiber liquid-liquid-liquid microextraction combined with high performance liquid chromatography-ultraviolet detection for the determination of various environmental estrogens in environmental and biological samples. Journal of Chromatography A, 1305, 17–26. DOI: 10.1016/j.chroma.2013.06.029. CrossrefGoogle Scholar

  • [12] Cheng, J., Xia, Y. T., Zhou, Y. W., Guo, F., & Chen, G. (2011). Application of an ultrasound-assisted surfactant-enhanced emulsification microextraction method for the analysis of diethofencarb and pyrimethanil fungicides in water and fruit juice samples. Analytica Chimica Acta, 701, 86–91. DOI: 10.1016/j.aca.2011.04.058. CrossrefGoogle Scholar

  • [13] Dadfarnia, S., & Shabani, A. M. H. (2010). Recent development in liquid phase microextraction for determination of trace level concentration of metals-A review. Analytica Chimica Acta, 658, 107–119. DOI: 10.1016/j.aca.2009.11.022. CrossrefGoogle Scholar

  • [14] Ebrahimzadeh, H., Asgharinezhad, A. A., Abedi, H., & Kamarei, F. (2011). Optimization of carrier-mediated threephase hollow fiber microextraction combined with HPLC-UV for determination of propylthiouracil in biological samples. Talanta, 85, 1043–1049. DOI: 10.1016/j.talanta.2011.05.015. CrossrefGoogle Scholar

  • [15] Elçi, L., Elçi, A., Berg, T. A., & Tyson, J. F. (2013). Dispersive liquid-liquid microextraction and microsample injection system coupled with inductively coupled plasma-mass spectrometry for inorganic arsenic speciation in natural waters. International Journal of Environmental Analytical Chemistry, 93, 1065–1073. DOI: 10.1080/03067319.2012.756105. CrossrefGoogle Scholar

  • [16] Farajzadeh, M. A., & Nouri, N. (2013). Simultaneous derivatization and air-assisted liquid-liquid microextraction of some aliphatic amines in different aqueous samples followed by gas chromatography-flame ionization detection. Analytica Chimica Acta, 775, 50–57. DOI: 10.1016/j.aca.2013.03.004. CrossrefGoogle Scholar

  • [17] Fattahi, N., Assadi, Y., Hosseini, M. R. M., & Jahromi, E. Z. (2007). Determination of chlorophenols in water samples using simultaneous dispersive liquid-liquid microextraction and derivatization followed by gas chromatography-electroncapture detection. Journal of Chromatography A, 1157, 23–29. DOI: 10.1016/j.chroma.2007.04.062. CrossrefGoogle Scholar

  • [18] Gao, W. H., Chen, G. P., Chen, Y. W., Li, N. N., Chen, T. F., & Hu, Z. D. (2011). Selective extraction of alkaloids in human urine by on-line single drop microextraction coupled with sweeping micellar electrokinetic chromatography. Journal of Chromatography A, 1218, 5712–5717. DOI: 10.1016/j.chroma.2011.06.074. CrossrefGoogle Scholar

  • [19] Gonzálvez, A., Garrigues, S., Armenta, S., & de la Guardia, M. (2010). Headspace-liquid phase microextraction for attenuated total reflection infrared determination of volatile organic compounds at trace levels. Analytical Chemistry, 82, 3045–3051. DOI: 10.1021/ac1001838. CrossrefGoogle Scholar

  • [20] Guo, L., & Lee, H. K. (2011a). Low-density solvent-based solvent demulsification dispersive liquid-liquid microextraction for the fast determination of trace levels of sixteen priority polycyclic aromatic hydrocarbons in environmental water samples. Journal of Chromatography A, 1218, 5040–5046. DOI: 10.1016/j.chroma.2011.05.069. CrossrefGoogle Scholar

  • [21] Guo, L., & Lee, H. K. (2011b). Ionic liquid based three-phase liquid-liquid-liquid solvent bar microextraction for the determination of phenols in seawater samples. Journal of Chromatography A, 1218, 4299–4306. DOI: 10.1016/j.chroma.2011.05.031. CrossrefGoogle Scholar

  • [22] Hassan, J., & Shamsipur, M. (2013). Extraction of ultra traces of polychlorinated biphenyls in aqueous samples using suspended liquid-phase microextraction and gas chromatography-electron capture detection. Environmental Monitoring and Assessment, 185, 3637–3644. DOI: 10.1007/s10661-012-2815-6. CrossrefGoogle Scholar

  • [23] He, Y., & Lee, H. K. (1997). Liquid phase microextraction in a single drop of organic solvent by using a conventional mcirosyringe. Analytical Chemistry, 69, 4634–4640. DOI: 10.1021/ac970242q. CrossrefGoogle Scholar

  • [24] He, Y., Vargas, A., & Kang, Y. J. (2007). Headspace liquidphase microextraction of methamphetamine and amphetamine in urine by an aqueous drop. Analytica Chimica Acta, 589, 225–230. DOI: 10.1016/j.aca.2007.02.064. CrossrefGoogle Scholar

  • [25] He, Y., Pohl, J., Engel, R., Rothman, L., & Thomas, M. (2009). Preparation of ionic liquid based solid-phase microextraction fiber and its application to forensic determination of methamphetamine and amphetamine in human urine. Journal of Chromatography A, 1216, 4824–4830. DOI: 10.1016/j.chroma.2009.04.028. CrossrefGoogle Scholar

  • [26] He, Y. (2012). Liquid-based microextraction techniques for environmental analysis. In. J. L. Pawliszyn (Ed.), Comprehensive sampling and sample preparation: Analytical techniques for scientists (Vol. 3, pp. 835–862). Oxford, UK: Academic Press. Google Scholar

  • [27] Ho, Y. M., Tsoi, Y. K., & Leung, K. S. Y. (2013). Highly sensitive and selective organophosphate screening in twelve commodities of fruits, vegetables and herbal medicines by dispersive liquid-liquid microextraction. Analytica Chimica Acta, 775, 58–66. DOI: 10.1016/j.aca.2013.02.043. CrossrefGoogle Scholar

  • [28] Hu, M. H., Chen, H. Y., Jiang, Y., & Zhu, H. F. (2013). Headspace single-drop microextraction coupled with gas chromatography electron capture detection of butanone derivative for determination of iodine in milk powder and urine. Chemical Papers, 67, 1255–1261. DOI: 10.2478/s11696-013-0391-z. CrossrefGoogle Scholar

  • [29] Kocúrová, L., Balogh, I. S., & Andruch, V. (2013). Solvent microextraction. A review of recent efforts at automation. Microchemical Journal, 110, 599–607. DOI: 10.1016/j.microc.2013.07.009. CrossrefGoogle Scholar

  • [30] Lee, J. Y., & Lee, H. K. (2011). Fully automated dynamic insyringe liquid-phase microextraction and on-column derivatization of carbamate pesticides with gas chromatography/mass spectrometric analysis. Analytical Chemistry, 83, 6856–6861. DOI: 10.1021/ac200807d. CrossrefGoogle Scholar

  • [31] Li, P. J., & Hu, B. (2011). Sensitive determination of phenylarsenic compounds based on a dual preconcentration method with capillary electrophoresis/UV detection. Journal of Chromatography A, 1218, 4779–4787. DOI: 10.1016/j.chroma.2011.05.058. CrossrefGoogle Scholar

  • [32] Li, Y., Chen, P. S., & Huang, S. D. (2013). Water with low concentration of surfactant in dispersed solvent-assisted emulsion dispersive liquid-liquid microextraction for the determination of organochlorine pesticides in aqueous samples. Journal of Chromatography A, 1300, 51–57. DOI: 10.1016/j.chroma.2013.02.073. CrossrefGoogle Scholar

  • [33] Liang, P., & Zhao, E. H. (2011). Determination of trace palladium in complicated matrices by displacement dispersive liquid-liquid microextraction and graphite furnace atomic absorption spectrometry. Microchimica Acta, 174, 153–158. DOI: 10.1007/s00604-011-0611-6. CrossrefGoogle Scholar

  • [34] Lin, C. H., Yan, C. T., Kumar, P. V., Li, H. P., & Jen, J. F. (2011). Determination of pyrethroid metabolites in human urine using liquid phase microextraction coupled in-syringe derivatization followed by gas chromatography/electron capture detection. Analytical & Bioanalytical Chemistry, 401, 927–937. DOI: 10.1007/s00216-011-5122-0. CrossrefGoogle Scholar

  • [35] Liu, S. R., & Dasgupta, P. K. (1995). Liquid droplet. A renewable gas sampling interface. Analytical Chemistry, 67, 2042–2049. DOI: 10.1021/ac00109a023. CrossrefGoogle Scholar

  • [36] Liu, J. F., Jiang, G. B., Chi, Y. G., Cai, Y. Q., Zhou, Q. X., & Hu, J. T. (2003). Use of ionic liquid for liquid-phase microextraction of polycyclic aromatic hydrocarbons. Analytical Chemistry, 75, 5870–5876. DOI: 10.1021/ac034506m. CrossrefGoogle Scholar

  • [37] Liu, S. H., Xie, Q. L., Chen, J., Sun, J. Z., He, H., & Zhang, X. K. (2013). Development and comparison of two dispersive liquid-liquid microextraction techniques coupled to high performance liquid chromatography for the rapid analysis of bisphenol A in edible oils. Journal of Chromatography A, 1295, 16–23. DOI: 10.1016/j.chroma.2013.04.054. CrossrefGoogle Scholar

  • [38] Marguí, E., Sagué, M., Queralt, I., & Hidalgo, M. (2013). Liquid phase microextraction strategies combined with total reflection X-ray spectrometry for the determination of low amounts of inorganic antimony species in waters. Analytica Chimica Acta, 786, 8–15. DOI: 10.1016/j.aca.2013.05.006. CrossrefGoogle Scholar

  • [39] Márquez-Sillero, I., Aguilera-Herrador, E., Cárdenas, S., & Valcárcel, M. (2011). Determination of 2,4,6-tricholoroanisole in water and wine samples by ionic liquid-based single-drop microextraction and ion mobility spectrometry. Analytica Chimica Acta, 702, 199–204. DOI: 10.1016/j.aca.2011.06.046. CrossrefGoogle Scholar

  • [40] Martín, J., Buchberger, W., Alonso, E., Himmelsbach, M., & Aparicio, I. (2011). Comparison of different extraction methods for the determination of statin drugs in wastewater and river water by HPLC/Q-TOF-MS. Talanta, 85, 607–615. DOI: 10.1016/j.talanta.2011.04.017. CrossrefGoogle Scholar

  • [41] Matsadiq, G., Hu, H. L., Ren, H. B., Zhou, Y. W., Liu, L., & Cheng, J. (2011). Quantification of multi-residue levels in peach juices, pulps and peels using dispersive liquid-liquid microextraction based on floating organic droplet coupled with gas chromatography-electron capture detection. Journal of Chromatography B, 879, 2113–2118. DOI: 10.1016/j.jchromb.2011.05.047. CrossrefGoogle Scholar

  • [42] Maya, F., Horstkotte, B., Estela, J. M., & Cerd`a, V. (2012). Lab in a syringe: fully automated dispersive liquid-liquid microextraction with integrated spectrophotometric detection. Analytical & Bioanalytical Chemistry, 404, 909–917. DOI: 10.1007/s00216-012-6159-4. CrossrefGoogle Scholar

  • [43] Melwanki, M. B., & Huang, S. D. (2006). Extraction of hydroxyaromatic compounds in river water by liquid-liquid-liquid microextraction with automated movement of the acceptor and the donor phase. Journal of Separation Science, 29, 2078–2084. DOI: 10.1002/jssc.200600050. CrossrefGoogle Scholar

  • [44] Meng, L., Wang, Y. Y., Meng, P. J., Wang, Y. J., & Zhang, Q. (2011). Determination of drugs of abuse in saliva by dispersive liquid-liquid microextraction coupled with capillary zone electrophoresis. Chinese Journal of Analytical Chemistry, 39, 1077–1082. DOI: 10.3724/sp.j.1096.2011.01077. CrossrefGoogle Scholar

  • [45] Mirzaei, M., & Dinpanah, H. (2011). Three phases hollow fiber LPME combined with HPLC-UV for extraction, preconcentration and determination of valerenic acid in Valeriana officinalis. Journal of Chromatography B, 879, 1870–1874. DOI: 10.1016/j.jchromb.2011.05.005. CrossrefGoogle Scholar

  • [46] Mitani, C., & Anthemidis, A. N. (2013). On-line liquid phase micro-extraction based on drop-in-plug sequential injection lab-at-valve platform for metal determination. Analytica Chimica Acta, 771, 50–55. DOI: 10.1016/j.aca.2013.02.003. CrossrefGoogle Scholar

  • [47] Mohamadi, M., & Mostafavi, A. (2010). A novel solidified floating organic drop microextraction based on ultrasounddispersion for separation and preconcentration of palladium in aqueous samples. Talanta, 81, 309–313. DOI: 10.1016/j.talanta.2009.12.004. CrossrefGoogle Scholar

  • [48] Moradi, M., Yamini, Y., Kakehmam, J., Esrafili, A., & Ghambarian, M. (2011). A new strategy to simultaneous microextraction of acidic and basic compounds. Journal of Chromatography A, 1218, 3945–3951. DOI: 10.1016/j.chroma.2011.04.060. CrossrefGoogle Scholar

  • [49] Moreno, F., García-Barrera, T., & Gómez-Ariza, J. L. (2013). Simultaneous speciation and preconcentration of ultra trace concentrations of mercury and selenium species in environmental and biological samples by hollow fiber liquid phase microextraction prior to high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry. Journal of Chromatography A, 1300, 43–50. DOI: 10.1016/j.chroma.2013.02.083. CrossrefGoogle Scholar

  • [50] Moreno-González, D., Huertas-Pérez, J. F., García-Campaña, A. M., Bosque-Sendra, J. M., & Gámiz-Gracia, L. (2013). Ultrasound-assisted surfactant-enhanced emulsification microextraction for the determination of carbamates in wines by ultra-high performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 1315, 1–7. DOI: 10.1016/j.chroma.2013.09.028. CrossrefGoogle Scholar

  • [51] Najafi, N. M., Tavakoli, H., Abdollahzadeh, Y., & Alizadeh, R. (2012). Comparison of ultrasound-assisted emulsification and dispersive liquid-liquid microextraction methods for the speciation of inorganic selenium in environmental water samples using low density extraction solvents. Analytica Chimica Acta, 714, 82–88. DOI: 10.1016/j.aca.2011.11.063. CrossrefGoogle Scholar

  • [52] Pedersen-Bjergaard, S., & Rasmussen, K. E. (1999). Liquid-liquid-liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis. Analytical Chemistry, 71, 2650–2656. DOI: 10.1021/ac990055n. CrossrefGoogle Scholar

  • [53] Ramos-Dorta, C. V., Pino, V., & Afonso, A. M. (2013). Monitoring polycyclic aromatic hydrocarbons in seawaters and wastewaters using a dispersive liquid-liquid microextraction method. Environmental Technology, 34, 607–616. DOI: 10.1080/09593330.2012.710255. CrossrefGoogle Scholar

  • [54] Ramos Payán, M., Bello López, M. A., Fernández Torres, R., Villar Navarro, M., & Callejón Mochón, M. (2011). Electromembrane extraction (EME) and HPLC determination of non-steroidal anti-inflammatory drugs (NSAIDs) in wastewater samples. Talanta, 85, 394–399. DOI: 10.1016/j.talanta.2011.03.076. CrossrefGoogle Scholar

  • [55] Ramos Payán, M. D., Jensen, H., Petersen, N. J., Hansen, S. H., & Pedersen-Bjergaard, S. (2012). Liquid-phase microextraction in a microfluidic-chip — High enrichment and sample clean-up from small sample volumes based on threephase extraction. Analytica Chimica Acta, 735, 46–53. DOI: 10.1016/j.aca.2012.05.023. CrossrefGoogle Scholar

  • [56] Rezaee, M., Assadi, Y., Hosseini, M. R. M., Aghaee, E., Ahmadi, F., & Berijani, S. (2006). Determination of organic compounds in water using dispersive liquid-liquid microextraction. Journal of Chromatography A, 1116, 1–9. DOI: 10.1016/j.chroma.2006.03.007. CrossrefGoogle Scholar

  • [57] Rezaei, F., Yamini, Y., Moradi, M., & Daraei, B. (2013). Supramolecular solvent-based hollow fiber liquid phase microextraction of benzodiazepines. Analytica Chimica Acta, 804, 135–142. DOI: 10.1016/j.aca.2013.10.026. CrossrefGoogle Scholar

  • [58] Rincón, A. A., Pino, V., Ayala, J. H., & Afonso, A. M. (2011). Headspace-single drop microextraction (HS-SDME) in combination with high-performance liquid chromatography (HPLC) to evaluate the content of alkyl- and methoxyphenolic compounds in biomass smoke. Talanta, 85, 1265–1273. DOI: 10.1016/j.talanta.2011.05.046. CrossrefGoogle Scholar

  • [59] Rusnáková, L., Andruch, V., Balogh, I. S., & Škrlíková, J. (2011). A dispersive liquid-liquid microextraction procedure for determination of boron in water after ultrasound-assisted conversion to tetrafluoroborate. Talanta, 85, 541–545. DOI: 10.1016/j.talanta.2011.04.030. CrossrefGoogle Scholar

  • [60] Sşahin, Ç. A., & Durukan, I. (2011). Ligandless-solidified floating organic drop microextraction method for the preconcentration of trace amount of cadmium in water samples. Talanta, 85, 657–661. DOI: 10.1016/j.talanta.2011.04.044. CrossrefGoogle Scholar

  • [61] Saraji, M., & Boroujeni, M. K. (2011). Analysis of narcotic drugs in biological samples using hollow fiber liquid-phase microextraction and gas chromatography with nitrogen phosphorus detection. Microchimica Acta, 174, 159–166. DOI: 10.1007/s00604-011-0612-5. CrossrefGoogle Scholar

  • [62] Senra-Ferreiro, S., Pena-Pereira, F., Costas-Mora, I., Romero, V., Lavilla, I., & Bendicho, C. (2011). Ion pair-based liquidphase microextraction combined with cuvetteless UV-vis micro-spectrophotometry as a miniaturized assay for monitoring ammonia in waters. Talanta, 85, 1448–1452. DOI: 10.1016/j.talanta.2011.06.030. CrossrefGoogle Scholar

  • [63] Sereshti, H., Izadmanesh, Y., & Samadi, S. (2011). Optimized ultrasonic assisted extraction-dispersive liquid-liquid microextraction coupled with gas chromatography for determination of essential oil of Oliveria decumbens Vent. Journal of Chromatography A, 1218, 4593–4598. DOI: 10.1016/j.chroma.2011.05.037. CrossrefGoogle Scholar

  • [64] Sereshti, H., Samadi, S., & Jalali-Heravi, M. (2013). Determination of volatile components of green, black, oolong and white tea by optimized ultrasound-assisted extractiondispersive liquid-liquid microextraction coupled with gas chromatography. Journal of Chromatography A, 1280, 1–8. DOI: 10.1016/j.chroma.2013.01.029. CrossrefGoogle Scholar

  • [65] Shamsipur, M., Zahedi, M. M., De Filippo, G., & Lippolis, V. (2011). Development of a novel flow injection liquid-liquid microextraction method for the on-line separation and preconcentration for determination of zinc(II) using 5-(8-hydroxy-2-quinolinylmethyl)-2,8-dithia-5-aza-2,6-pyridinophane as a sensitive and selective fluorescent chemosensor. Talanta, 85, 687–693. DOI: 10.1016/j.talanta.2011.04.049. Google Scholar

  • [66] Shen, G., & Lee, H. K. (2002). Hollow fiber-protected liquidphase microextraction of triazine herbicides. Analytical Chemistry, 74, 648–654. DOI: 10.1021/ac010561o. CrossrefGoogle Scholar

  • [67] Shen, G., & Lee, H. K. (2003). Headspace liquid-phase microextraction of chlorobenzenes in soil with gas chromatographyelectron capture detection. Analytical Chemistry, 75, 98–103. DOI: 10.1021/ac020428b. CrossrefGoogle Scholar

  • [68] Shokoufi, N., Shemirani, F., & Assadi, Y. (2007). Fiber opticlinear array detection spectrophotometry in combination with dispersive liquid-liquid microextraction for simultaneous preconcentration and determination of palladium and cobalt. Analytica Chimica Acta, 597, 349–356. DOI: 10.1016/j.aca.2007.07.009. CrossrefGoogle Scholar

  • [69] Škrlíková, J., Andruch, V., Balogh, I. S., Kocúrová, L., Nagy, L., & Bazel, Y. (2011). A novel, environmentally friendly dispersive liquid-liquid microextraction procedure for the determination of copper. Microchemical Journal, 99, 40–45. DOI: 10.1016/j.microc.2011.03.008. CrossrefGoogle Scholar

  • [70] Sobhi, H. R., Esrafili, A., Farahani, H., Gholami, M., & Baneshi, M. M. (2013). Simultaneous derivatization and extraction of nitrophenols in soil and rain samples using modified hollow-fiber liquid-phase microextraction followed by gas chromatography-mass spectrometry. Environmental Monitoring and Assessment, 185, 9055–9065. DOI: 10.1007/s10661-013-3235-y. CrossrefGoogle Scholar

  • [71] Socas-Rodríguez, B., Asensio-Ramos, M., Hernández-Borges, J., & Rodríguez-Delgado, M. á. (2013). Hollow-fiber liquidphase microextraction for the determination of natural and synthetic estrogens in milk samples. Journal of Chromatography A, 1313, 175–184. DOI: 10.1016/j.chroma.2013.05.028. CrossrefGoogle Scholar

  • [72] Song, X. L., Li, J. H., Liao, C. Y., & Chen, L. X. (2011). Ultrasound-assisted dispersive liquid-liquid microextraction combined with low solvent consumption for determination of polycyclic aromatic hydrocarbons in seawater by GC-MS. Chromatographia, 74, 89–98. DOI: 10.1007/s10337-011-2048-9. CrossrefGoogle Scholar

  • [73] Soylak, M., & Yilmaz, E., (2011). Ionic liquid dispersive liquid-liquid microextraction of lead as pyrrolidinedithiocarbamate chelate prior to its flame atomic absorption spectrometric determination. Desalination, 275, 297–301. DOI: 10.1016/j.desal.2011.03.008. CrossrefGoogle Scholar

  • [74] Soylak, M., & Unsal, Y. E. (2012). Dispersive liquid-liquid microextraction of cadmium(II) for preconcentration prior to flame atomic absorption spectrometric detection in water. Toxicological & Environmental Chemistry, 94, 1480–1489. DOI: 10.1080/02772248.2012.717625. CrossrefGoogle Scholar

  • [75] Sun, S. H., Cheng, Z. H., Xie, J. P., Zhang, J. X., Liao, Y. X., Wang, H. Y., & Guo, Y. L. (2005). Identification of volatile basic components in tobacco by headspace liquidphase microextraction coupled to matrix-assisted laser desorption/ionization with Fourier transform mass spectrometry. Rapid Communications in Mass Spectrometry, 19, 1025–1030. DOI: 10.1002/rcm.1884. CrossrefGoogle Scholar

  • [76] Sun, S., Wang, Y., Yu, W. Z., Zhao, T. Q., Gao, S. Q., Kang, M. Q., Zhang, Y. P., Zhang, H. Q., & Yu, Y. (2011). Determination of sudan dyes in red wine and fruit juice using ionic liquid-based liquid-liquid microextraction and highperformance liquid chromatography. Journal of Separation Science, 34, 1730–1737. DOI: 10.1002/jssc.201100037. CrossrefGoogle Scholar

  • [77] Tapadia, K., Shrivas, K., & Upadhyay, L. S. B. (2011). GC-MS coupled with hollow-fiber drop-to-drop solvent microextraction for determination of antidepressants drugs in human blood sample. Chromatographia, 74, 437–442. DOI: 10.1007/s10337-011-2096-1. CrossrefGoogle Scholar

  • [78] Ugland, H. G., Krogh, M., & Rasmussen, K. E. (2000). Liquid phase microextraction as a sample preapation technique prior to capillary gas chromatogrpahic-determination of benzodiazepines in biological matrices. Journal of Chromatography B, 749, 85–92. DOI: 10.1016/s0378-4347(00)00382-0. CrossrefGoogle Scholar

  • [79] Villar Navarro, M., Ramos Payán, M. R., Fernández-Torres, R., Bello-López, M. A., Callejón Mochón, M. C., & Guiráum Pérez, A. G. (2011). Capillary electrophoresis determination of nonsteroidal anti-inflammatory drugs in wastewater using hollow fiber liquid-phase microextraction. Electrophoresis, 32, 2107–2113. DOI: 10.1002/elps.201100105. CrossrefGoogle Scholar

  • [80] Villar-Navarro, M., Ramos-Payán, M., Fernández-Torres, R., Callejón-Mochón, M., & Bello-López, M. A. (2013). A novel application of three phase hollow fiber based liquid phase microextraction (HF-LPME) for the HPLC determination of two endocrine disrupting compounds (EDCs), n-octylphenol and n-nonylphenol, in environmental waters. Science of The Total Environment, 443, 1–6. DOI: 10.1016/j.scitotenv.2012.10.071. CrossrefGoogle Scholar

  • [81] Wen, X. D., Deng, Q. W., & Guo, J. (2011a). Ionic liquid-based single drop microextraction of ultra-trace copper in food and water samples before spectrophotometric determination. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79, 1941–1945. DOI: 10.1016/j.saa.2011.05.095. CrossrefGoogle Scholar

  • [82] Wen, X. D., Deng, Q.W., Guo, J., & Yang, S. C. (2011b). Ultrasensitive determination of cadmium in rice and water by UV-vis spectrophotometry after single drop microextraction. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79, 508–512. DOI: 10.1016/j.saa.2011.03.021. CrossrefGoogle Scholar

  • [83] Williams, D. B. G., George, M. J., Meyer, R., & Marjanovic, L. (2011). Bubbles in solvent microextraction. The influence of intentionally introduced bubbles on extraction efficiency. Analytical Chemistry, 83, 6713–6716. DOI: 10.1021/ac201323z. CrossrefGoogle Scholar

  • [84] Wu, J. M., Ee, K. H., & Lee, H. K. (2005). Automated dynamic liquid-liquid-liquid microextraction followed by highperformance liquid chromatogrpahy-ultraviolet detection for the determination of phenoxy acid herbicides in environmental waters. Journal of Chromatography A, 1082, 121–127. DOI: 10.1016/j.chroma.2005.05.077. CrossrefGoogle Scholar

  • [85] Wu, Q. H., Zhang, S. H., Wang, C., Zang, X. H., & Wang, Z. (2013). Development of ultrasound-assisted emulsification microextraction for the determination of triazine herbicides in environmental water samples by highperformance liquid chromatography. International Journal of Environmental Analytical Chemistry, 93, 884–893. DOI: 10.1080/03067319.2012.663756. CrossrefGoogle Scholar

  • [86] Xiao, Y., Wang, Y., Gao, S. Q., Zhang, R., Ren, R. B., Li, N., & Zhang, H. Q. (2011). Determination of the active constituents in Arnebia euchroma (Royle) Johnst. by ionic liquid-based ultrasonic-assisted extraction high-performance liquid chromatography. Journal of Chromatography B, 879, 1833–1838. DOI: 10.1016/j.jchromb.2011.05.009. CrossrefGoogle Scholar

  • [87] Xu, H., Liao, Y., & Yao, J. R. (2007). Development of a novel ultrasound-assisted headspace liquid-phase microextraction and its application to the analysis of chlorophenols in real aqueous samples. Journal of Chromatography A, 1167, 1–8. DOI: 10.1016/j.chroma.2007.08.022. CrossrefGoogle Scholar

  • [88] Xu, H., Song, D. D., Cui, Y. F., Hu, S., Yu, Q.W., & Feng, Y. Q. (2009a). Analysis of hexanal and heptanal in human blood by simultaneous derivatization and dispersive liquid-liquid microextraction then LC-APCI-MS-MS. Chromatographia, 70, 775–781. DOI: 10.1365/s10337-009-1208-7. CrossrefGoogle Scholar

  • [89] Xu, L., Basheer, C., & Lee, H. K. (2009b). Chemical reactions in liquid-phase microextraction. Journal of Chromatography A, 1216, 701–707. DOI: 10.1016/j.chroma.2008.10.005. CrossrefGoogle Scholar

  • [90] Yan, H. Y., Cheng, X. L., & Liu, B. M. (2011). Simultaneous determination of six phthalate esters in bottled milks using ultrasound-assisted dispersive liquid-liquid microextraction coupled with gas chromatography. Journal of Chromatography B, 879, 2507–2512. DOI: 10.1016/j.jchromb.2011.07.001. CrossrefGoogle Scholar

  • [91] Yang, W. W., Zhang, H. F., Jia, Y. R., Zhao, T., Zhao, Y. L., Tong, L. J., & Sun, L. X. (2011). Hollow fiber liquidphase microextraction for the determination of nimesulide in human plasma and its application to a pharmacokinetic study. Pharmazie, 66, 564–569. DOI: 10.1691/ph.2011.1013. CrossrefGoogle Scholar

  • [92] Yao, C., & Anderson, J. L. (2009). Dispersive liquid-liquid microextraction using an in situ metathesis reaction to form an ionic liquid extraction phase for the preconcentration of aromatic compounds from water. Analytical & Bioanalytical Chemistry, 395, 1491–1502. DOI: 10.1007/s00216-009-3078-0. CrossrefGoogle Scholar

  • [93] Yazdi, A. S., & Es’haghi, Z. (2005). Two-step hollow fiberbased, liquid-phase microextraction combined with highperformance liquid chromatography. A new approach to determination of aromatic amines in water. Journal of Chromatography A, 1082, 136–142. DOI: 10.1016/j.chroma.2005.05.102. CrossrefGoogle Scholar

  • [94] Ye, Q., Zheng, D. G., Liu, L. H., & Hong, L. M. (2011). Rapid analysis of aldehydes by simultaneous microextraction and derivatization followed by GC-MS. Journal of Separation Science, 34, 1607–1612. DOI: 10.1002/jssc.201100145. CrossrefGoogle Scholar

  • [95] Yousefi, S. M., & Shemirani, F. (2013). Selective and sensitive speciation analysis of Cr(VI) and Cr(III) in water samples by fiber optic-linear array detection spectrophotometry after ion pair based-surfactant assisted dispersive liquid-liquid microextraction. Journal of Hazardous Materials, 254–255, 134–140. DOI: 10.1016/j.jhazmat.2013.03.025. CrossrefGoogle Scholar

  • [96] Zeng, C. J., Yang, F. W., & Zhou, N. (2011). Hollow fiber supported liquid membrane extraction coupled with thermospray flame furnace atomic absorption spectrometry for the speciation of Sb(III) and Sb(V) in environmental and biological samples. Microchemical Journal, 98, 307–311. DOI: 10.1016/j.microc.2011.02.016. CrossrefGoogle Scholar

  • [97] Zeng, C. J., Lin, Y., Zhou, N., Zheng, J. T., & Zhang, W. (2012). Room temperature ionic liquids enhanced the speciation of Cr(VI) and Cr(III) by hollow fiber liquid phase microextraction combined with flame atomic absorption spectrometry. Journal of Hazardous Materials, 237–238, 365–370. DOI: 10.1016/j.jhazmat.2012.08.061. CrossrefGoogle Scholar

  • [98] Zhang, H. F., & Shi, Y. P. (2010). Temperature-assisted ionic liquid dispersive liquid-liquid microextraction combined with high performance liquid chromatography for the determination of anthraquinones in Radix et Rhizoma Rhei samples. Talanta, 82, 1010–1016. DOI: 10.1016/j.talanta.2010.06.008. CrossrefGoogle Scholar

  • [99] Zhao, L. M., & Lee, H. K. (2001). Determination of phenols in water using liquid phase microextraction with back extraction combined with high-performance liquid chromatography. Journal of Chromatography A, 931, 95–105. DOI: 10.1016/s0021-9673(01)01199-2. CrossrefGoogle Scholar

  • [100] Zhao, R. S., Wang, X., Sun, J., Hu, C., & Wang, X. K. (2011). Determination of triclosan and triclocarban in environmental water samples with ionic liquid/ionic liquid dispersive liquid-liquid microextraction prior to HPLC-ESI-MS/MS. Microchimica Acta, 174, 145–151. DOI: 10.1007/s00604-011-0607-2. CrossrefGoogle Scholar

  • [101] Zheng, C., Zhao, J., Bao, P., Gao, J., & He, J. (2011). Dispersive liquid-liquid microextraction based on solidification of floating organic droplet followed by high-performance liquid chromatography with ultraviolet detection and liquid chromatography-tandem mass spectrometry for the determination of triclosan and 2,4-dichlorophenol in water samples. Journal of Chromatography A, 1218, 3830–3836. DOI: 10.1016/j.chroma.2011.04.050. CrossrefGoogle Scholar

  • [102] Zhou, Q. X., Gao, Y. Y., & Xie, G. H. (2011). Determination of bisphenol A, 4-n-nonylphenol, and 4-tert-octylphenol by temperature-controlled ionic liquid dispersive liquid-phase microextraction combined with high performance liquid chromatography-fluorescence detector. Talanta, 85, 1598–1602. DOI: 10.1016/j.talanta.2011.06.050. CrossrefGoogle Scholar

About the article

Published Online: 2014-04-15

Published in Print: 2014-08-01

Citation Information: Chemical Papers, Volume 68, Issue 8, Pages 995–1007, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-014-0562-6.

Export Citation

© 2014 Institute of Chemistry, Slovak Academy of Sciences.

Comments (0)

Please log in or register to comment.
Log in