Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers

More options …
Volume 68, Issue 9


Photocatalytic air-cleaning using TiO2 nanoparticles in porous silica substrate

Andraž Šuligoj / Urška Štangar / Nataša Tušar
  • Laboratory for Environmental Research, University of Nova Gorica, Vipavska 13, 5001, Nova Gorica, Slovenia
  • Laboratory for Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-05-23 | DOI: https://doi.org/10.2478/s11696-014-0553-7


For air-cleaning, TiO2 photocatalysis represents one of the very efficient advanced oxidation processes (AOPs) that can decompose chemically and microbiologically stable volatile organic compounds (VOCs). However, the photocatalytic activity of nanocrystalline TiO2 powders can be significantly suppressed due to TiO2’s poor adsorption characteristics for organic compounds and its relatively low surface area. The present study sought to solve this problem by immobilising nanocrystalline TiO2 in the porous silicate substrate. Two titania sources were used in an aqueous solution form: a suspension from a TiO2 producer in Slovenia, Cinkarna Celje (CC-40) and a TiO2 sol, prepared by a low-temperature synthesis developed at the University of Nova Gorica (TiO2-UNG). Two different types of mesoporous silica were used: SBA-15 with an ordered hexagonal pore arrangement and KIL-2 with disordered inter-particle mesoporosity. The structural characteristics, adsorption properties and photocatalytic activity of catalysts deposited on aluminium plates as thin films were investigated. CC-40 exhibited higher adsorption and photocatalytic activity than TiO2-UNG due to the greater quantity of Ti-OH groups on its surface. The addition of mesoporous silica led to higher adsorption and catalytic activity for both TiO2 sources. SBA-15 was more efficient than KIL-2.

Keywords: TiO2 nanoparticles; porous silica; SBA-15; KIL-2; adsorption; photocatalytic activity

  • [1] Adams, M., Skillen, N., McCullagh, C., & Robertson, P. K. J. (2013). Development of a doped titania immobilised thin film multi tubular photoreactor. Applied Catalysis B: Environmental, 130–131, 99–105. DOI: 10.1016/j.apcatb.2012.10.008. http://dx.doi.org/10.1016/j.apcatb.2012.10.008CrossrefWeb of ScienceGoogle Scholar

  • [2] Arıer, Ü. Ö. A., & Tepehan, F. Z. (2011). Influence of heat treatment on the particle size of nanobrookite TiO2 thin films produced by sol-gel method. Surface & Coatings Technology, 206, 37–42. DOI: 10.1016/j.surfcoat.2011.06.039. http://dx.doi.org/10.1016/j.surfcoat.2011.06.039Web of ScienceGoogle Scholar

  • [3] Augugliaro, V., Coluccia, S., Loddo, V., Marchese, L., Martra, G., Palmisano, L., & Schiavello, M. (1999). Photocatalytic oxidation of gaseous toluene on anatase TiO2 catalyst: mechanistic aspects and FT-IR investigation. Applied Catalysis B: Environmental, 20, 15–27. DOI: 10.1016/s0926-3373(98)00088-5. http://dx.doi.org/10.1016/S0926-3373(98)00088-5CrossrefGoogle Scholar

  • [4] Çamurlu, H. E., Kesmez, Ö., Burunkaya, E., Kiraz, N., Yeşil, Z., Asiltürk, M., & Arpaç, E. (2012). Sol-gel thin films with anti-reflective and self-cleaning properties. Chemical Papers, 66, 461–471. DOI: 10.2478/s11696-012-0144-4. http://dx.doi.org/10.2478/s11696-012-0144-4Web of ScienceCrossrefGoogle Scholar

  • [5] Chang, M.W., Chen, T. S., & Chern, J. M. (2008). Initial degradation rate of p-nitrophenol in aqueous solution by Fenton reaction. Industrial & Engineering Chemistry Research, 47, 8533–8541. DOI: 10.1021/ie8003013. http://dx.doi.org/10.1021/ie8003013CrossrefWeb of ScienceGoogle Scholar

  • [6] Chen, S. Z., Zhang, P. Y., Zhu, W. P., Chen, L., & Xu, S. M. (2006). Deactivation of TiO2 photocatalytic films loaded on aluminium: XPS and AFM analyses. Applied Surface Science, 252, 7532–7538. DOI: 10.1016/j.apsusc.2005.09.023. http://dx.doi.org/10.1016/j.apsusc.2005.09.023CrossrefGoogle Scholar

  • [7] Černigoj, U., Lavrenčič Štangar, U., Trebše, P., Opara Krašovec, U., & Gross, S. (2006). Photocatalytically active TiO2 thin films produced by surfactant-assisted sol-gel processing. Thin Solid Films, 495, 327–332. DOI: 10.1016/j.tsf.2005.08.240. http://dx.doi.org/10.1016/j.tsf.2005.08.240CrossrefGoogle Scholar

  • [8] Di Paola, A., Bellardita, M., Palmisano, L., Barbieriková, Z., & Brezová, V. (2014). Influence of crystallinity and OH surface density on the photocatalytic activity of TiO2 powders. Journal of Photochemistry and Photobiology A: Chemistry, 273, 59–67. DOI: 10.1016/j.jphotochem.2013.09.008. http://dx.doi.org/10.1016/j.jphotochem.2013.09.008CrossrefGoogle Scholar

  • [9] Folli, A., Pade, C., Hansen, T. B., De Marco, T., & Macphee, D. E. (2012). TiO2 photocatalysis in cementitious systems: Insights into self-cleaning and depollution chemistry. Cement and Concrete Research, 42, 539–548. DOI: 10.1016/j.cemconres.2011.12.001. http://dx.doi.org/10.1016/j.cemconres.2011.12.001Web of ScienceCrossrefGoogle Scholar

  • [10] Fu, P., Luan, Y., & Dai, X. (2004). Preparation of activated carbon fibers supported TiO2 photocatalyst and evaluation of its photocatalytic reactivity. Journal of Molecular Catalysis A: Chemical, 221, 81–88. DOI: 10.1016/j.molcata.2004.06.018. http://dx.doi.org/10.1016/j.molcata.2004.06.018CrossrefGoogle Scholar

  • [11] Janik, J. M., Pytasz, G., & Stanek, T. (1969). An infra-red study of crystallo-hydrates. Acta Physica Polonica, 35, 997–1008. Google Scholar

  • [12] Kočí, K., Obalová, L., Matějová, L., Plachá, D., Lacný, Z., Jirkovský, J., & Šolcová, O. (2009). Effect of TiO2 particle size on the photocatalytic reduction of CO2. Applied Catalysis B: Environmental, 89, 494–502. DOI: 10.1016/j.apcatb.2009.01.010. http://dx.doi.org/10.1016/j.apcatb.2009.01.010CrossrefGoogle Scholar

  • [13] Li, G., Richter, C. P., Milot, R. L., Cai, L., Schmuttenmaer, C. A., Crabtree, R. H., Brudvig, G. W., & Batista, V. S. (2009). Synergistic effect between anatase and rutile TiO2 nanoparticles in dye-sensitized solar cells. Dalton Transactions, 2009, 10078–10085. DOI: 10.1039/b908686b. http://dx.doi.org/10.1039/b908686bCrossrefWeb of ScienceGoogle Scholar

  • [14] Mazaj, M., Costacurta, S., Zabukovec Logar, N., Mali, G., Novak Tušar, N., Innocenzi, P., Malfatti, L., Thibault-Starzyk, F., Amenitsch, H., Kaučič, V., & Soler-Illia, G. J. A. A. (2008). Mesoporous aluminophosphate thin films with cubic pore arrangement. Langmuir, 24, 6220–6225. DOI: 10.1021/la7035746. http://dx.doi.org/10.1021/la7035746CrossrefWeb of ScienceGoogle Scholar

  • [15] Novotná, P., Zita, J., Krýsa, J., Kalousek, V., & Rathouský, J. (2008). Two-component transparent TiO2/SiO2 and TiO2/PDMS films as efficient photocatalysts for environmental cleaning. Applied Catalysis B: Environmental, 79, 179–185. DOI: 10.1016/j.apcatb.2007.10.012. http://dx.doi.org/10.1016/j.apcatb.2007.10.012Web of ScienceCrossrefGoogle Scholar

  • [16] Novotna, P., Krysa, J., Maixner, J., Kluson, P., & Novak, P. (2010). Photocatalytic activity of sol-gel TiO2 thin films deposited on soda lime glass and soda lime glass precoated with a SiO2 layer. Surface & Coatings Technology, 204, 2570–2575. DOI: 10.1016/j.surfcoat.2010.01.043. http://dx.doi.org/10.1016/j.surfcoat.2010.01.043CrossrefWeb of ScienceGoogle Scholar

  • [17] Prieto, O., Fermoso, J., & Irusta, R. (2007). Photocatalytic degradation of toluene in air using a fluidized bed photoreactor. International Journal of Photoenergy, 2007. DOI: 10.1155/2007/32859. Web of ScienceCrossrefGoogle Scholar

  • [18] Sorolla M. G., II, Dalida, M. L., Khemthong, P., & Grisdanurak, N. (2012). Photocatalytic degradation of paraquat using nano-sized Cu-TiO2/SBA-15 under UV and visible light. Journal of Environmental Sciences, 24, 1125–1132. DOI: 10.1016/s1001-0742(11)60874-7. http://dx.doi.org/10.1016/S1001-0742(11)60874-7CrossrefGoogle Scholar

  • [19] Subramanian, A., & Wang, H. W. (2012). Effect of hydroxyl group attachment on TiO2 films for dye-sensitized solar cells. Applied Surface Science, 258, 7833–7838. DOI: 10.1016/j.apsusc.2012.04.069. http://dx.doi.org/10.1016/j.apsusc.2012.04.069Web of ScienceCrossrefGoogle Scholar

  • [20] Štangar, U. L., Černigoj, U., Trebše, P., Maver, K., & Gross, S. (2006). Photocatalytic TiO2 coatings: Effect of substrate and template. Monatshefte für Chemie, 137, 647–655. DOI: 10.1007/s00706-006-0443-y. http://dx.doi.org/10.1007/s00706-006-0443-yCrossrefGoogle Scholar

  • [21] Šuligoj, A., Černigoj, U., & Lavrenčič Štangar, U. (2012). SI Patent No. 23585. Ljubljana, Slovenia: Slovenian Intellectual Property Office. Google Scholar

  • [22] Taguchi, A., & Schüth, F. (2005). Ordered mesoporous materials in catalysis. Microporous and Mesoporous Materials, 77, 1–45. DOI: 10.1016/j.micromeso.2004.06.030. http://dx.doi.org/10.1016/j.micromeso.2004.06.030CrossrefGoogle Scholar

  • [23] Taranto, J., Frochot, D., & Pichat, P. (2009). Photocatalytic air purification: Comparative efficacy and pressure drop of a TiO2-coated thin mesh and a honeycomb monolith at high air velocities using a 0.4 m3 close-loop reactor. Separation and Purification Technology, 67, 187–193. DOI: 10.1016/j.seppur.2009.03.017. http://dx.doi.org/10.1016/j.seppur.2009.03.017Web of ScienceGoogle Scholar

  • [24] Tasbihi, M., Lavrenčič Štangar, U., Černigoj, U., & Kogej, K. (2009). Low-temperature synthesis and characterization of anatase TiO2 powders from inorganic precursors. Photochemical & Photobiological Sciences, 8, 719–725. DOI: 10.1039/b817472e. http://dx.doi.org/10.1039/b817472eWeb of ScienceCrossrefGoogle Scholar

  • [25] Tasbihi, M., Lavrenčič Štangar, U., Sever Škapin, A., Ristić, A., Kaučič, V., & Novak Tušar, N. (2010). Titania-containing mesoporous silica powders: Structural properties and photocatalytic activity towards isopropanol degradation. Journal of Photochemistry and Photobiology A: Chemistry, 216, 167–178. DOI: 10.1016/j.jphotochem.2010.07.011. http://dx.doi.org/10.1016/j.jphotochem.2010.07.011CrossrefGoogle Scholar

  • [26] Tasbihi, M., Lavrenčič Štangar, U., Černigoj, U., Jirkovský, J., Bakardjieva, S., & Novak Tušar, N. (2011). Photocatalytic oxidation of gaseous toluene on titania/mesoporous silica powders in a fluidized-bed reactor. Catalysis Today, 161, 181–188. DOI: 10.1016/j.cattod.2010.08.015. http://dx.doi.org/10.1016/j.cattod.2010.08.015CrossrefWeb of ScienceGoogle Scholar

  • [27] Tasbihi, M., Kete, M., Raichur, A. M., Novak Tušar, N., & Lavrenčič Štangar, U. (2012). Photocatalytic degradation of gaseous toluene by using immobilized titania/silica on aluminum sheets. Environmental Science and Pollution Research, 19, 3735–3742. DOI: 10.1007/s11356-012-0864-6. http://dx.doi.org/10.1007/s11356-012-0864-6CrossrefGoogle Scholar

  • [28] Wang, J., Liu, X., Li, R., Qiao, P., Xiao, L., & Fan, J. (2012). TiO2 nanoparticles with increased surface hydroxyl groups and their improved photocatalytic activity. Catalysis Communications, 19, 96–99. DOI: 10.1016/j.catcom.2011.12.028. http://dx.doi.org/10.1016/j.catcom.2011.12.028CrossrefWeb of ScienceGoogle Scholar

  • [29] Ye, S. Y., Tian, Q. M., Song, X. L., & Luo, S. C. (2009). Photoelectrocatalytic degradation of ethylene by a combination of TiO2 and activated carbon felts. Journal of Photochemistry and Photobiology A: Chemistry, 208, 27–35. DOI: 10.1016/j.jphotochem.2009.08.001. http://dx.doi.org/10.1016/j.jphotochem.2009.08.001CrossrefWeb of ScienceGoogle Scholar

  • [30] Ye, S. Y., Li, M. B., Song, X. L., Luo, S. C., & Fang, Y. C. (2011). Enhanced photocatalytic decomposition of gaseous ozone in cold storage environments using a TiO2/ACF film. Chemical Engineering Journal, 167, 28–34. DOI: 10.1016/j.cej.2010.11.102. http://dx.doi.org/10.1016/j.cej.2010.11.102Web of ScienceCrossrefGoogle Scholar

  • [31] Zita, J., Krýsa, J., & Mills, A. (2009). Correlation of oxidative and reductive dye bleaching on TiO2 photocatalyst films. Journal of Photochemistry and Photobiology A: Chemistry, 203, 119–124. DOI: 10.1016/j.jphotochem.2008.12.029. http://dx.doi.org/10.1016/j.jphotochem.2008.12.029Web of ScienceCrossrefGoogle Scholar

  • [32] Zita, J., Krýsa, J., Černigoj, U., Lavrenčič Štangar, U., Jirkovský, J., & Rathouský, J. (2011). Photocatalytic properties of different TiO2 thin films of various porosity and titania loading. Catalysis Today, 161, 29–34. DOI: 10.1016/j.cattod.2010.11.084. http://dx.doi.org/10.1016/j.cattod.2010.11.084Web of ScienceCrossrefGoogle Scholar

About the article

Published Online: 2014-05-23

Published in Print: 2014-09-01

Citation Information: Chemical Papers, Volume 68, Issue 9, Pages 1265–1272, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-014-0553-7.

Export Citation

© 2014 Institute of Chemistry, Slovak Academy of Sciences.

Comments (0)

Please log in or register to comment.
Log in