Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers

See all formats and pricing
More options …
Volume 69, Issue 1


Electrochemical nanostructured biosensors: carbon nanotubes versus conductive and semi-conductive nanoparticles

Nima Aliakbarinodehi
  • Corresponding author
  • Integrated Systems Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Route Cantonale, 1015 Lausanne, Switzerland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Irene Taurino
  • Integrated Systems Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Route Cantonale, 1015 Lausanne, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jagdale Pravin / Alberto Tagliaferro / Gianluca Piccinini
  • Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Giovanni De Micheli
  • Integrated Systems Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Route Cantonale, 1015 Lausanne, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sandro Carrara
  • Integrated Systems Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Route Cantonale, 1015 Lausanne, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-11-28 | DOI: https://doi.org/10.1515/chempap-2015-0004


The aim of this work was to demonstrate that various types of nanostructures provide different gains in terms of sensitivity or detection limit albeit providing the same gain in terms of increased area. Commercial screen printed electrodes (SPEs) were functionalized with 100 μg of bismuth oxide nanoparticles (Bi2O3 NPs), 13.5 μg of gold nanoparticles (Au NPs), and 4.8 μg of multi-wall carbon nanotubes (MWCNTs) to sense hydrogen peroxide (H2O2). The amount of nanomaterials to deposit was calculated using specific surface area (SSA) in order to equalize the additional electroactive surface area. Cyclic voltammetry (CV) experiments revealed oxidation peaks of Bi2O3 NPs, Au NPs, and MWCNTs based electrodes at (790 ± 1) mV, (386 ± 1) mV, and (589 ± 1) mV, respectively, and sensitivities evaluated by chronoamperometry (CA) were (74 ± 12) μA mM−1 cm−2, (129 ± 15) μA mM−1 cm−2, and (54 ± 2) μA mM−1 cm−2, respectively. Electrodes functionalized with Au NPs showed better sensing performance and lower redox potential (oxidative peak position) compared with the other two types of nanostructured SPEs. Interestingly, the average size of the tested Au NPs was 4 nm, under the limit of 10 nm where the quantum effects are dominant. The limit of detection (LOD) was (11.1 ± 2.8) μM, (8.0 ± 2.4) μM, and (3.4 ± 0.1) μM for Bi2O3 NPs, Au NPs, and for MWCNTs based electrodes, respectively.

Keywords: multi-wall carbon nanotube; cyclic voltammetry; chronoamperometry; hydrogen peroxide; bismuth oxide nanoparticle; gold nanoparticle


  • Alivisatos, A. P. (1996). Perspectives on the physical chemistry of semiconductor nanocrystals. The Journal of Physical Chemistry, 100, 13226-13239. DOI: 10.1021/jp9535506.CrossrefGoogle Scholar

  • Banks, C. E., Davies, T. J., Wildgoose, G. G., & Compton, R. G. (2005). Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. Chemical Communications, 2005, 829-841. DOI: 10.1039/b413177k.CrossrefGoogle Scholar

  • Boccaccini, A. R., Cho, J., Roether, J. A., Thomas, B. J. C., Minay, E. J., & Shaffer, M. S. P. (2006). Electrophoretic deposition of carbon nanotubes. Carbon, 44, 3149-3160. DOI: 10.1016/j.carbon.2006.06.021.CrossrefGoogle Scholar

  • Boero, C., Carrara, S., Del Vecchio, G., Calz`a, L., & De Micheli, G. (2011). Highly sensitive carbon nanotube-based sensing for lactate and glucose monitoring in cell culture. IEEE Transactions on Nanobioscience, 10, 59-67. DOI: 10.1109/tnb.2011.2138157.CrossrefGoogle Scholar

  • Bolotin, K. I., Kuemmeth, F., Pasupathy, A. N., & Ralph, D. C. (2004). Metal-nanoparticle single-electron transistors fabricated using electromigration. Applied Physics Letters, 84, 3154-3156. DOI: 10.1063/1.1695203.CrossrefGoogle Scholar

  • Bredol, M., & Kaczmarek, M. (2010). Potential of nano-ZnS as electrocatalyst. The Journal of Physical Chemistry A, 114, 3950-3955. DOI: 10.1021/jp907369f.CrossrefGoogle Scholar

  • Cadek, M., Murphy, R., McCarthy, B., Drury, A., Lahr, B., Barklie, R. C., In het Panhuis, M., Coleman, J. N., & Blau, W. J. (2002). Optimisation of the arc-discharge production of multi-walled carbon nanotubes. Carbon, 40, 923-928. DOI: 10.1016/s0008-6223(01)00221-4.CrossrefGoogle Scholar

  • Carrara, S., Shumyantseva, V. V., Archakov, A. I., & Samor`ı, B. (2008). Screen-printed electrodes based on carbon nanotubes and cytochrome P450scc for highly sensitive cholesterol biosensors. Biosensors & Bioelectronics, 24, 148-150. DOI: 10.1016/j.bios.2008.03.008.CrossrefGoogle Scholar

  • Carrara, S., Boero, C., & De Micheli, G. (2009). Quantum dots and wires to improve enzymes-based electrochemical biosensing. In A. Schmid, S. Goel, W. Wang, V. Beiu, & S.Google Scholar

  • Carrara (Eds.), Nano-net: Lecture notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (Vol. 20, pp. 189-199). Berlin, Germany: Springer. DOI: 10.1007/978-3-642-04850-0 26.CrossrefGoogle Scholar

  • Carrara, S., Baj-Rossi, C., Boero, C., & De Micheli, G. (2014). Do carbon nanotubes contribute to electrochemical biosensing? Electrochimica Acta, 128, 102-112. DOI: 10.1016/j.electacta.2013.12.123.CrossrefGoogle Scholar

  • Ding, Y., Dong, Y., Bapat, A., Nowak, J. D., Carter, C. B., Kortshagen, U. R., & Campbell, S. A. (2006). Single nanoparticle semiconductor devices. IEEE Transactions on Electron Devices, 53, 2525-2531. DOI: 10.1109/ted.2006.882047.CrossrefGoogle Scholar

  • Facci, P., Erokhin, V., Carrara, S., & Nicolini, C. (1996). Roomtemperature single-electron junction. Proceedings of the National Academy of Sciences of the United States of America, 93, 10556-10559. DOI: 10.1073/pnas.93.20.10556.CrossrefGoogle Scholar

  • Feil, W. A., Wessels, B. W., Tonge, L. M., & Marks, T. J. (1990). Organometallic chemical vapor deposition of strontium titanate. Journal of Applied Physics, 67, 3858-3861. DOI: 10.1063/1.345034.CrossrefGoogle Scholar

  • Ge, M., Li, Y., Liu, L., Zhou, Z., & Chen, W. (2011). Bi2O3- Bi2WO6 composite microspheres: Hydrothermal synthesis and photocatalytic performances. The Journal of Physical Chemistry C, 115, 5220-5225. DOI: 10.1021/jp108414e. CrossrefGoogle Scholar

  • German, N., Ramanavicius, A., Voronovic, J., & Ramanaviciene, A. (2012). Glucose biosensor based on glucose oxidase and gold nanoparticles of different sizes covered by polypyrrole layer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 413, 224-230. DOI: 10.1016/j.colsurfa.2012.02.012.CrossrefGoogle Scholar

  • Ghosh, S. K., & Pal, T. (2007). Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chemical Reviews, 107, 4797-4862. DOI: 10.1021/cr0680282.CrossrefGoogle Scholar

  • Guascito, M. R., Chirizzi, D., Picca, R. A., Mazzotta, E., & Malitesta, C. (2011). Ag nanoparticles capped by a nontoxic polymer: Electrochemical and spectroscopic characterization of a novel nanomaterial for glucose detection. Materials Science and Engineering C, 31, 606-611. DOI: 10.1016/j.msec.2010.11.022.CrossrefGoogle Scholar

  • Guo, F., He, J., Li, J.,Wu, W., Hang, Y., & Hua, J. (2013). Photovoltaic performance of bithiazole-bridged dyes-sensitized solar cells employing semiconducting quantum dot CuInS2 as barrier layer material. Journal of Colloid and Interface Science, 408, 59-65. DOI: 10.1016/j.jcis.2013.06.069.CrossrefGoogle Scholar

  • Habibi, B., & Pournaghi-Azar, M. H. (2010). Simultaneous determination of ascorbic acid, dopamine and uric acid by use of a MWCNT modified carbon-ceramic electrode and differential pulse voltammetry. Electrochimica Acta, 55, 5492-5498. DOI: 10.1016/j.electacta.2010.04.052.CrossrefGoogle Scholar

  • Haruehanroengra, S., & Wang, W. (2007). Analyzing conductance of mixed carbon-nanotube bundles for interconnect applications. IEEE Electron Device Letters, 28, 756-759. DOI: 10.1109/led.2007.901584.CrossrefGoogle Scholar

  • Hernández-Santos, D., González-García, M. B., & García, A. C. (2002). Metal-nanoparticles based electroanalysis. Electroanalysis, 14, 1225-1235. DOI: 10.1002/1521-4109(200210) 14:18<1225::AID-ELAN1225>3.0.CO;2-Z.CrossrefGoogle Scholar

  • Hu, G., Ma, Y., Guo, Y., & Shao, S. (2008). Electrocatalytic oxidation and simultaneous determination of uric acid and ascorbic acid on the gold nanoparticles-modified glassy carbon electrode. Electrochimica Acta, 53, 6610-6615. DOI: 10.1016/j.electacta.2008.04.054.CrossrefGoogle Scholar

  • Huang, X., Jain, P. K., El-Sayed, I. H., & El-Sayed, M. A. (2007). Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine, 2, 681-693. DOI: 10.2217/17435889.2.5.681.CrossrefGoogle Scholar

  • Hubbard, A. T. (1969). Study of the kinetics of electrochemical reactions by thin-layer voltammetry: I. theory. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 22, 165-174. DOI: 10.1016/s0022-0728(69)80247-0.CrossrefGoogle Scholar

  • Jiang, L., You, T., & Deng, W. Q. (2013). Enhanced photovoltaic performance of a quantum dot-sensitized solar cell using a Nb-doped TiO2 electrode. Nanotechnology, 24, 415401. DOI: 10.1088/0957-4484/24/41/415401.CrossrefGoogle Scholar

  • Journet, C., & Bernier, P. (1998). Production of carbon nanotubes. Applied Physics A: Materials Science & Processing, 67, 1-9. DOI: 10.1007/s003390050731.CrossrefGoogle Scholar

  • Junno, T., Carlsson, S. B., Xu, H., Montelius, L., & Samuelson, L. (1998). Fabrication of quantum devices by ˚Angstr¨om-level manipulation of nanoparticles with an atomic force microscope. Applied Physics Letters, 72, 548-550. DOI: 10.1063/1. 120754.CrossrefGoogle Scholar

  • Kairdolf, B. A., Smith, A. M., Stokes, T. H., Wang, M. D., Young, A. N., & Nie, S. (2013). Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annual Review of Analytical Chemistry, 6, 143-162. DOI: 10.1146/annurev-anchem-060908-155136.CrossrefGoogle Scholar

  • Kharissova, O. V., Osorio, M., Kharisov, B. I., Yacamán, M. J., & Méndez, U. O. (2010). A comparison of bismuth nanoforms obtained in vacuum and air by microwave heating of bis muth powder. Materials Chemistry and Physics, 121, 489-496. DOI: 10.1016/j.matchemphys.2010.02.013.CrossrefGoogle Scholar

  • Li, N. B., Park, J. H., Park, K., Kwon, S. J., Shin, H., & Kwak, J. (2008). Characterization and electrocatalytic properties of Prussian blue electrochemically deposited on nano- Au/PAMAM dendrimer-modified gold electrode. Biosensors & Bioelectronics, 23, 1519-1526. DOI: 10.1016/j.bios.2008. 01.009.PubMedCrossrefGoogle Scholar

  • Lin, J. Y., Liao, J. H., & Hung, T. Y. (2011). A composite counter electrode of CoS/MWCNT with high electrocatalytic activity for dye-sensitized solar cells. Electrochemistry Communications, 13, 977-980. DOI: 10.1016/j.elecom.2011.06. 016.CrossrefGoogle Scholar

  • Liu, G., & Lin, Y. (2005). A renewable electrochemical magnetic immunosensor based on gold nanoparticle labels. Journal of Nanoscience and Nanotechnology, 5, 1060-1065. DOI: 10.1166/jnn.2005.178.PubMedCrossrefGoogle Scholar

  • Liu, B., Wang, Z., Dong, Y., Zhu, Y., Gong, Y., Ran, S., Liu, Z., Xu, J., Xie, Z., Chen, D., & Shen, G. (2012). ZnOnanoparticle- assembled cloth for flexible photodetectors and recyclable photocatalysts. Journal of Materials Chemistry, 22, 9379-9384. DOI: 10.1039/c2jm16781f.CrossrefGoogle Scholar

  • Lowell, S., & Shields, J. E. (1991). Powder surface area and porosity (3rd ed.). London, UK: Chapman and Hall.Google Scholar

  • Mocak, J., Bond, A. M., Mitchell, S., & Scollary, G. (1997). A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: Application to voltammetric and stripping techniques. Pure and Applied Chemistry, 69, 297-328. DOI: 10.1351/pac199769020297.CrossrefGoogle Scholar

  • Nie, Z., Petukhova, A., & Kumacheva, E. (2010). Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nature Nanotechnology, 5, 15-25. DOI: 10.1038/nnano.2009.453.PubMedCrossrefGoogle Scholar

  • Nihei, M., Kondo, D., Kawabata, A., Sato, S., Shioya, H., Sakaue, M., Iwai, T., Ohfuti, M., & Awano, Y. (2005). Lowresistance multi-walled carbon nanotube vias with parallel channel conduction of inner shells. Proceedings of the IEEE 2005 International Interconnect Technology Conference, June 6-8, 2005 (pp. 234-236). Burlingame, CA, USA: IEEE Xplore. DOI: 10.1109/iitc.2005.1499995.CrossrefGoogle Scholar

  • Paddeu, S., Ram, M. K., Carrara, S., & Nicolini, C. (1998). Langmuir-Schaefer films of a poly(o-anisidine) conducting polymer for sensors and displays. Nanotechnology, 9, 228-236. DOI: 10.1088/0957-4484/9/3/014.CrossrefGoogle Scholar

  • Paradise, M., & Goswami, T. (2007). Carbon nanotubes - Production and industrial applications. Materials & Design, 28, 1477-1489. DOI: 10.1016/j.matdes.2006.03.008.CrossrefGoogle Scholar

  • Peigney, A., Laurent, C., Flahaut, E., Bacsa, R. R., & Rousset, A. (2001). Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon, 39, 507-514. DOI: 10.1016/s0008-6223(00)00155-x.CrossrefGoogle Scholar

  • Periasamy, A. P., Yang, S., & Chen, S. M. (2011). Preparation and characterization of bismuth oxide nanoparticlesmultiwalled carbon nanotube composite for the development of horseradish peroxidase based H2O2 biosensor. Talanta, 87, 15-23. DOI: 10.1016/j.talanta.2011.09.021.CrossrefGoogle Scholar

  • Pingarrón, J. M., Yá˜nez-Sede˜no, P., & González-Cortés, A. (2008). Gold nanoparticle-based electrochemical biosensors. Electrochimica Acta, 53, 5848-5866. DOI: 10.1016/j. electacta.2008.03.005.CrossrefGoogle Scholar

  • Prabhuram, J., Zhao, T. S., Tang, Z. K., Chen, R., & Liang, Z. X. (2006). Multiwalled carbon nanotube supported PtRu for the anode of direct methanol fuel cells. The Journal of Physical Chemistry B, 110, 5245-5252. DOI: 10.1021/jp0567063.CrossrefGoogle Scholar

  • Pumera, M., Sánchez, S., Ichinose, I., & Tang, J. (2007). Electrochemical nanobiosensors. Sensors and Actuators B: Chemical, 123, 1195-1205. DOI: 10.1016/j.snb.2006.11.016.CrossrefGoogle Scholar

  • Roschier, L., Penttilä, J., Martin, M., Hakonen, P., Paalanen, M., Tapper, U., Kauppinen, E. I., Journet, C., & Bernier, P. (1999). Single-electron transistor made of multiwalled carbon nanotube using scanning probe manipulation. Applied Physics Letters, 75, 728-730. DOI: 10.1063/1.124495.CrossrefGoogle Scholar

  • Rosi, N. L., & Mirkin, C. A. (2005). Nanostructures in biodiagnostics. Chemical Reviews, 105, 1547-1562. DOI: 10.1021/cr030067f.CrossrefGoogle Scholar

  • Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., & P¨oschl, U. (2005). Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon, 43, 1731-1742. DOI: 10.1016/j. carbon.2005.02.018.CrossrefGoogle Scholar

  • Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671-675. DOI: 10.1038/nmeth.2089.CrossrefGoogle Scholar

  • Shipway, A. N., & Willner, I. (2001). Nanoparticles as structural and functional units in surface-confined architectures. Chemical Communications, 2001, 2035-2045. DOI: 10.1039/b105164b.CrossrefGoogle Scholar

  • Shumyantseva, V. V., Carrara, S., Bavastrello, V., Riley, D. J., Bulko, T. V., Skryabin, K. G., Archakov, A. I., & Nicolini, C. (2005). Direct electron transfer between cytochrome P450scc and gold nanoparticles on screen-printed rhodium-graphite electrodes. Biosensors & Bioelectronics, 21, 217-222. DOI: 10.1016/j.bios.2004.10.008.CrossrefGoogle Scholar

  • Singh, C., Shaffer, M. S. P., & Windle, A. H. (2003). Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method. Carbon, 41, 359-368. DOI: 10.1016/s0008-6223(02)00314-7.CrossrefGoogle Scholar

  • Sorgenfrei, S., Chiu, C. Y., Gonzalez, R. L., Jr., Yu, Y. J., Kim, P., Nuckolls, C., & Shepard, K. L. (2011). Label-free singlemolecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor. Nature Nanotechnology, 6, 126-132. DOI: 10.1038/nnano.2010.275.CrossrefGoogle Scholar

  • Streeter, I., Wildgoose, G. G., Shao, L., & Compton, R. G. (2008). Cyclic voltammetry on electrode surfaces covered with porous layers: An analysis of electron transfer kinetics at single-walled carbon nanotube modified electrodes.Google Scholar

  • Sensors and Actuators B: Chemical, 133, 462-466. DOI: 10.1016/j.snb.2008.03.015.CrossrefGoogle Scholar

  • Sun, S. (2006). Recent advances in chemical synthesis, selfassembly, and applications of FePt nanoparticles. Advanced Materials, 18, 393-403. DOI: 10.1002/adma.200501464.CrossrefGoogle Scholar

  • Taufik, S., Yusof, N. A., Tee, T.W., & Ramli, I. (2011). Bismuth oxide nanoparticles/chitosan/modified electrode as biosensor for DNA hybridization. International Journal of Electrochemical Science, 6, 1880-1891.Google Scholar

  • Taurino, I., Magrez, A., Matteini, F., Forró, L., De Micheli, G., & Carrara, S. (2013). Direct growth of nanotubes and graphene nanoflowers on electrochemical platinum electrodes. Nanoscale, 5, 12448-12455. DOI: 10.1039/c3nr032 83c.PubMedCrossrefGoogle Scholar

  • Tian, Y., & Tatsuma, T. (2005). Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. Journal of the American Chemical Society, 127, 7632-7637. DOI: 10.1021/ja042192u.Google Scholar

  • Trindade, T., O’Brien, P., & Pickett, N. L. (2001). Nanocrystalline semiconductors: Synthesis, properties, and perspectives. Chemistry of Materials, 13, 3843-3858. DOI: 10.1021/ cm000843p.CrossrefGoogle Scholar

  • Wang, F., & Hu, S. (2009). Electrochemical sensors based on metal and semiconductor nanoparticles. Microchimica Acta, 165, 1-22. DOI: 10.1007/s00604-009-0136-4.CrossrefGoogle Scholar

  • Wang, Q., & Zheng, J. (2010). Electrodeposition of silver nanoparticles on a zinc oxide film: improvement of amperometric sensing sensitivity and stability for hydrogen perox ide determination. Microchimica Acta, 169, 361-365. DOI: 10.1007/s00604-010-0356-7.CrossrefGoogle Scholar

  • Willner, I., & Willner, B. (2001). Molecular and biomolecular optoelectronics. Pure and Applied Chemistry, 73, 535-542.Google Scholar

  • Willner, I., Baron, R., & Willner, B. (2007). Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics. Biosensors & Bioelectronics, 22, 1841-1852. DOI: 10.1016/j.bios.2006.09.018.PubMedCrossrefGoogle Scholar

  • Woo, S., Kim, Y. R., Chung, T. D., Piao, Y., & Kim, H. (2012). Synthesis of a graphene-carbon nanotube composite and its electrochemical sensing of hydrogen peroxide. Electrochimica Acta, 59, 509-514. DOI: 10.1016/j.electacta.2011.11.012.CrossrefGoogle Scholar

  • Yang, G., Yuan, R., & Chai, Y. Q. (2008). A high-sensitive amperometric hydrogen peroxide biosensor based on the immobilization of hemoglobin on gold colloid/L-cysteine/gold colloid/ nanoparticles Pt-chitosan composite film-modified platinum disk electrode. Colloids and Surfaces B: Biointerfaces, 61, 93-100. DOI: 10.1016/j.colsurfb.2007.07.014.CrossrefGoogle Scholar

  • Yin, H., Ai, S., Shi, W., & Zhu, L. (2009). A novel hydrogen peroxide biosensor based on horseradish peroxidase immobilized on gold nanoparticles-silk fibroin modified glassy carbon electrode and direct electrochemistry of horseradish peroxidase. Sensors and Actuators B: Chemical, 137, 747-753. DOI: 10.1016/j.snb.2008.12.046.CrossrefGoogle Scholar

  • Yin, G., Xing, L., Ma, X. J., & Wan, J. (2014). Non-enzymatic hydrogen peroxide sensor based on a nanoporous gold electrode modified with platinum nanoparticles. Chemical Papers, 68, 435-441. DOI: 10.2478/s11696-013-0473-y.CrossrefGoogle Scholar

  • Zeng, H., Duan, G., Li, Y., Yang, S., Xu, X., & Cai, W. (2010). Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: Defect origins and emission controls. Advanced Functional Materials, 20, 561-572. DOI: 10.1002/adfm.200901884.CrossrefGoogle Scholar

  • Zhang, J. Z. (1997). Ultrafast studies of electron dynamics in semiconductor and metal colloidal nanoparticles: Effects of size and surface. Accounts of Chemical Research, 30, 423-429. DOI: 10.1021/ar960178j.CrossrefGoogle Scholar

  • Zhang, H.,Wu, P., Li, Y., Liao, L., Fang, Z., & Zhong, X. (2010). Preparation of bismuth oxide quantum dots and their photocatalytic activity in a homogeneous system. ChemCatChem, 2, 1115-1121. DOI: 10.1002/cctc.201000090.CrossrefGoogle Scholar

  • Zhao, Y., Zhang, Z., & Dang, H. (2004). A simple way to prepare bismuth nanoparticles. Materials Letters, 58, 790-793. DOI: 10.1016/j.matlet.2003.07.013. CrossrefGoogle Scholar

About the article

Received: 2014-03-13

Revised: 2014-06-26

Accepted: 2014-06-30

Published Online: 2014-11-28

Published in Print: 2015-01-01

Citation Information: Chemical Papers, Volume 69, Issue 1, Pages 134–142, ISSN (Online) 1336-9075, DOI: https://doi.org/10.1515/chempap-2015-0004.

Export Citation

© 2015 Institute of Chemistry, Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in