Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers

More options …
Volume 69, Issue 1

Issues

Synthesis of carbon quantum dots for DNA labeling and its electrochemical, fluorescent and electrophoretic characterization

Vedran Milosavljevic
  • Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hoai Viet Nguyen
  • Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Petr Michalek
  • Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Amitava Moulick
  • Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Pavel Kopel
  • Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
  • Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rene Kizek
  • Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
  • Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vojtech Adam
  • Corresponding author
  • Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
  • Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-11-28 | DOI: https://doi.org/10.2478/s11696-014-0590-2

Abstract

Nanoparticles as a progressively developing branch offer a tool for studying the interaction of carbon quantum dots (CQDs) with DNA. In this study, fluorescent CQDs were synthesized using citric acid covered with polyethylene glycol (PEG) as the source of carbon precursors. Furthermore, interactions between CQDs and DNA (double-stranded DNA and single-stranded DNA) were investigated by spectral methods, gel electrophoresis, and electrochemical analysis. Primarily, the fluorescent behavior of CQDs in the presence of DNA was monitored and major differences in the interaction of CQDs with tested single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) were observed at different amounts of CQDs (μg mL−1: 25, 50, 100, 250, 500). It was found that the interaction of ssDNA with CQDs had no significant influence on the CQDs fluorescence intensity measured at the excitation wavelengths of 280 nm, 350 nm, and 400 nm. However, in the presence of dsDNA, the fluorescence intensity of CQDs was significantly increased. Our results provide basic understanding of the interaction between CQDs and DNA. Such fabricated CQDs-DNA might be of great benefit for the emerging nanomaterials based biosensing methods.

Keywords: carbon quantum dots; DNA; spectrophotometry; gel electrophoresis; electrochemical analysis

References

  • Bai, W. J., Zheng, H. Z., Long, Y. J., Mao, X. J., Gao, M., & Zhang, L. (2011). A carbon dots-based fluorescence turnon method for DNA determination. Analytical Sciences, 27, 243-246. DOI: 10.2116/analsci.27.243.CrossrefGoogle Scholar

  • Bartošik, M., & Paleček, E. (2011). Square wave stripping voltammetry of unlabeled single- and double-stranded DNAs. Electroanalysis, 23, 1311-1319. DOI: 10.1002/elan.201100 079.CrossrefGoogle Scholar

  • Bourlinos, A. B., Stassinopoulos, A., Anglos, D., Zboril, R., Karakassides, M., & Giannelis, E. P. (2008) Surface functionalized carbogenic quantum dots. Small, 4, 455-458. DOI: 10.1002/smll.200700578.Web of ScienceCrossrefPubMedGoogle Scholar

  • Cao, L., Wang, X., Meziani, M. J., Lu, F., Wang, H., Luo, P. G., Lin, Y., Harruff, B. A., Veca, L. M., Murray, D., Xie, S. Y., & Sun, Y. P. (2007). Carbon dots for multiphoton bioimaging. Journal of the American Chemical Society, 129, 11318-11319. DOI: 10.1021/ja073527l.Web of ScienceCrossrefGoogle Scholar

  • Ding, C., Zhu, A., & Tian, Y. (2014). Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Accounts of Chemical Research, 47, 20-30. DOI: 10.1021/ar400023s.Web of SciencePubMedCrossrefGoogle Scholar

  • Dong, Y., Zhou, N., Lin, X., Lin, J., Chi, Y., & Chen, G. (2010). Extraction of electrochemiluminescent oxidized cCarbon quantum dots from activated carbon. Chemistry of Materials, 22, 5895-5899. DOI: 10.1021/cm1018844.CrossrefWeb of ScienceGoogle Scholar

  • Dong, Y., Wang, R., Li, H., Shao, J., Chi, Y., Lin, X., & Chen, G. (2012a). Polyamine-functionalized carbon quantum dots for chemical sensing. Carbon, 50, 2810-2815. DOI: 10.1016/j.carbon.2012.02.046.Web of ScienceCrossrefGoogle Scholar

  • Dong, Y., Wang, R., Li, G., Chen, C., Chi, Y., & Chen, G. (2012b). Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Analytical Chemistry, 84, 6220-6224. DOI: 10.1021/ac3012126.CrossrefWeb of ScienceGoogle Scholar

  • Dong, Y., Chen, C., Lin, J., Zhou, N., Chi, Y., & Chen, G. (2013). Electrochemiluminescence emission from carbon quantum dot-sulfite coreactant system. Carbon, 56, 12-17. DOI: 10.1016/j.carbon.2012.12.086.CrossrefWeb of ScienceGoogle Scholar

  • Fu, A., Gu, W., Larabell, C., & Alivisatos, A. P. (2005). Semiconductor nanocrystals for biological imaging. Current Opinion in Neurobiology, 15, 568-575. DOI: 10.1016/j.conb.2005. 08.004.CrossrefPubMedGoogle Scholar

  • Grimes, A. F., Call, S. E., Vicente, D. A., English, D. S., & Harbron, E. J. (2006). Toward efficient photomodulation of conjugated polymer emission: Optimizing differential energy transfer in azobenzene-substituted PPV derivatives. The Journal of Physical Chemistry B, 110, 19183-19190.DOI: 10.1021/jp0613236.CrossrefGoogle Scholar

  • He, S., Huang, B. H., Tan, J., Luo, Q. Y., Lin, Y., Li, J., Hu, Y., Zhang, L., Yan, S., Zhang, Q., Pang, D. W., & Li, L. (2011). One-to-one quantum dot-labeled single long DNA probes. Biomaterials, 32, 5471-5477. DOI: 10.1016/j.biomaterials.2011.04.013.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Huska, D., Fabrik, I., Baloun, J., Adam, V., Masarik, M., Hubalek, J., Vasku, A., Trnkova, L., Horna, A., Zeman, L., & Kizek, R. (2009). Study of interactions between metallothionein and cisplatin by using differential pulse voltammetry Brdicka’s reaction and quartz crystal microbalance. Sensors, 9, 1355-1369. DOI: 10.3390/s90301355.CrossrefWeb of ScienceGoogle Scholar

  • Jia, X., Li, J., &Wang, E. (2012). One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale, 4, 5572-5575. DOI: 10.1039/c2nr31319g.Web of ScienceCrossrefPubMedGoogle Scholar

  • Kim, J., Park, J., Kim, H., Singha, K., & Kim, W. J. (2013). Transfection and intracellular trafficking properties of carbon dot-gold nanoparticle molecular assembly conjugated with PEI-pDNA. Biomaterials, 34, 7168-7180. DOI: 10.1016/j.biomaterials.2013.05.072.CrossrefWeb of SciencePubMedGoogle Scholar

  • Krejcova, L., Hynek, D., Kopel, P., Rodrigo, M. A. M., Tmejova, K., Trnkova, L., Adam, V., Hubalek, J., & Kizek, R. (2013). Quantum dots for electrochemical labelling of neuramidinase genes of H5N1, H1N1 and H3N2 influenza. International Journal of Electrochemical Science, 8, 4457-4471.Google Scholar

  • Kwon, W., Do, S., Won, D. C., & Rhee, S. W. (2013). Carbon quantum dot-based field-effect transistors and their ligand length-dependent carrier mobility. ACS Applied Materials & Interfaces, 5, 822-827. DOI: 10.1021/am3023898.CrossrefWeb of ScienceGoogle Scholar

  • Li, H., Ming, H., Liu, Y., Yu, H., He, X., Huang, H., Pan, K., Kang, Z., & Lee, S. T. (2011a). Fluorescent carbon nanoparticles: electrochemical synthesis and their pH sensitive photoluminescence properties. New Journal of Chemistry, 35, 2666-2670. DOI: 10.1039/c1nj20575g.CrossrefGoogle Scholar

  • Li, H., He, X., Liu, Y., Huang, H., Lian, S., Lee, S. T., & Kang, Z. (2011b). One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon, 49, 605-609. DOI: 10.1016/j.carbon.2010.10. 004.CrossrefWeb of ScienceGoogle Scholar

  • Li, Y., Zhang, B. P., Zhao, J. X., Ge, Z. H., Zhao, X. K., & Zou, L. (2013a). ZnO/carbon quantum dots heterostructure with enhanced photocatalytic properties. Applied Surface Science, 279, 367-373. DOI: 10.1016/j.apsusc.2013.04.114.CrossrefGoogle Scholar

  • Li, K., Zhang, W., & Chen, Y. (2013b). Quantum dot binding to DNA: Single-molecule imaging with atomic force microscopy. Biotechnology Journal, 8, 110-116. DOI: 10.1002/biot.201200155.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Liang, Q., Ma, W., Shi, Y., Li, Z., & Yang, X. (2013). Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications. Carbon, 60, 421-428. DOI: 10.1016/j.carbon.2013.04.055.Web of ScienceCrossrefGoogle Scholar

  • Linehan, K., & Doyle, H. (2014). Efficient one-pot synthesis of highly monodisperse carbon quantum dots. RSC Advances, 4, 18-21. DOI: 10.1039/c3ra45083j.CrossrefGoogle Scholar

  • Liu, Y., Liu, C. Y., & Zhang, Z. Y. (2011). Synthesis and surface photochemistry of graphitized carbon quantum dots. Journal of Colloid and Interface Science, 356, 416-421. DOI: 10.1016/j.jcis.2011.01.065.CrossrefGoogle Scholar

  • Liu, S., Tian, J., Wang, L., Luo, Y., & Sun, X. (2012). A general strategy for the production of photoluminescent carbon nitride dots from organic amines and their application as novel peroxidase-like catalysts for colorimetric detection of H2O2 and glucose. RSC Advances, 2, 411-413. DOI: 10.1039/c1ra00709b.CrossrefWeb of ScienceGoogle Scholar

  • Long, Y. M., Zhou, C. H., Zhang, Z. L., Tian, Z. Q., Bao, L., Lin, Y., & Pang, D. W. (2012). Shifting and non-shifting fluorescence emitted by carbon nanodots. Journal of Materials Chemistry, 22, 5917-5920. DOI: 10.1039/c2jm30639e.CrossrefGoogle Scholar

  • Ming, H., Ma, Z., Liu, Y., Pan, K., Yu, H.,Wang, F., & Kang, Z. (2012). Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton Transactions, 41, 9526-9531. DOI: 10.1039/c2dt30985h.CrossrefGoogle Scholar

  • Paleček, E. (1960). Oscillographic polarography of highly polymerized deoxyribonucleic acid. Nature, 188, 656-657. DOI: 10.1038/188656a0.CrossrefGoogle Scholar

  • Paleček, E. (1961). Oscillographic polarography of deoxyribonucleic acid degradation products. Biochimica et Biophysica Acta, 51, 1-8. DOI: 10.1016/0006-3002(61)91010-1.PubMedCrossrefGoogle Scholar

  • Paleček, E., & Fojta, M. (2001). Detecting DNA hybridization and damage. Analytical Chemistry, 73, 74A-83A. DOI: 10.1021/ac0123936.CrossrefGoogle Scholar

  • Paleček, E. (2002). Past, present and future of nucleic acids electrochemistry. Talanta, 56, 809-819. DOI: 10.1016/s0039-9140(01)00649-x.CrossrefGoogle Scholar

  • Pandey, A. P., Karande, K. P., More, M. P., Gattani, S. G., & Deshmukh, P. K. (2014). Graphene based nanomaterials: Diagnostic applications. Journal of Biomedical Nanotechnology, 10, 179-204. DOI: 10.1166/jbn.2014.1773.Web of ScienceCrossrefGoogle Scholar

  • Pohanka, M. (2014). Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds. Chemical Papers, in press. DOI: 10.2478/s11696-014-0542-x.Web of ScienceCrossrefGoogle Scholar

  • Ryvolova, M., Chomoucka, J., Drbohlavova, J., Kopel, P., Babula, P., Hynek, D., Adam, V., Eckschlager, T., Hubalek, J., Stiborova, M., Kaiser, J., & Kizek, R. (2012). Modern micro and nanoparticle-based imaging techniques. Sensors, 12, 14792-14820. DOI: 10.3390/s121114792.CrossrefWeb of ScienceGoogle Scholar

  • Sahu, S., Behera, B., Maiti, T. K., & Mohapatra, S. (2012). Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chemical Communications, 48, 8835-8837. DOI: 10.1039/c2cc33796g.CrossrefGoogle Scholar

  • Song, Y., Feng, D., Shi, W., Li, X., & Ma, H. (2013). Parallel comparative studies on the toxic effects of unmodified CdTe quantum dots, gold nanoparticles, and carbon nanodots on live cells well as green gram sprouts. Talanta, 116, 237-244. DOI: 10.1016/j.talanta.2013.05.022.CrossrefWeb of ScienceGoogle Scholar

  • Su, Y., Xie, Y., Hou, X., & Lv, Y. (2014). Recent advances in analytical applications of nanomaterials in liquid-phase chemiluminescence. Applied Spectroscopy Reviews, 49, 201-232. DOI: 10.1080/05704928.2013.819514.Web of ScienceCrossrefGoogle Scholar

  • Vaishnavi, E., & Renganathan, R. (2014). “Turn-on-off-on” fluorescence switching of quantum dots-cationic porphyrin nanohybrid: a sensor for DNA. Analyst, 139, 225-234. DOI: 10.1039/c3an01871g.Web of ScienceCrossrefGoogle Scholar

  • Wang, F., Pang, S., Wang, L., Li, Q., Kreiter, M., & Liu, C. Y. (2010a). One-step synthesis of highly luminescent carbon dots in noncoordinating solvents. Chemistry of Materials, 22, 4528-4530. DOI: 10.1021/cm101350u.CrossrefGoogle Scholar

  • Wang, C., Gao, X., & Su, X. (2010b). Study the damage of DNA molecules induced by three kinds of aqueous nanoparticles. Talanta, 80, 1228-1233. DOI: 10.1016/j.talanta.2009.09.014.CrossrefWeb of ScienceGoogle Scholar

  • Wang, J., Shan, Y., Zhao, W. W., Xu, J. J., & Chen, H. Y. (2011). Gold nanoparticle enhanced electrochemiluminescence of CdS thin films for ultrasensitive thrombin detection. Analytical Chemistry, 83, 4004-4011. DOI: 10.1021/ac200616g.CrossrefGoogle Scholar

  • Yang, T., Lu, M., Mao, X., Liu, W., Wan, L., Miao, S., & Xu, J. (2013). Synthesis of CdS quantum dots (QDs) via a hot-bubbling route and co-sensitized solar cells assembly. Chemical Engineering Journal, 225, 776-783. DOI: 10.1016/j.cej.2013.04.028.Web of ScienceCrossrefGoogle Scholar

  • Zhang, X., Ming, H., Liu, R., Han, X., Kang, Z., Liu, Y., & Zhang, Y. (2013). Highly sensitive humidity sensing properties of carbon quantum dots films. Materials Research Bulletin, 48, 790-794. DOI: 10.1016/j.materresbull.2012.11.056.CrossrefWeb of ScienceGoogle Scholar

  • Zhao, D., Li, J., Yang, T., & He, Z. (2014). “Turn off-on” fluorescent sensor for platinum drugs-DNA interactions based on quantum dots. Biosensors and Bioelectronics, 52, 29-35. DOI: 10.1016/j.bios.2013.08.031. Web of SciencePubMedCrossrefGoogle Scholar

About the article

Received: 2014-01-07

Revised: 2014-03-17

Accepted: 2014-03-18

Published Online: 2014-11-28

Published in Print: 2015-01-01


Citation Information: Chemical Papers, Volume 69, Issue 1, Pages 192–201, ISSN (Online) 1336-9075, DOI: https://doi.org/10.2478/s11696-014-0590-2.

Export Citation

© 2015 Institute of Chemistry, Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in