Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers


IMPACT FACTOR 2016: 1.258

SCImago Journal Rank (SJR) 2016: 0.348
Source Normalized Impact per Paper (SNIP) 2016: 0.533

Online
ISSN
1336-9075
See all formats and pricing
More options …
Volume 69, Issue 10 (Oct 2015)

Issues

Role of gadolinium(III) complex in improving thermal stability of polythiophene composite

Ferooze Ahmad Rafiqi / Kowsar Majid
Published Online: 2015-07-24 | DOI: https://doi.org/10.1515/chempap-2015-0149

Abstract

This paper involves the preparation of polythiophene (PTP) and its composite by the oxidative polymerisation method by using ferric chloride as an oxidant and thiophene monomer. The gadolinium( III) complex obtained by the refluxing technique was used as dopant in the PTP matrix. On the basis of the spectroscopic characterisation, seven-coordinate geometry is proposed for the complex. Conductance measurement confirms the non-selectrolyte nature of complex. The PTP and its composite were subjected to FTIR, X-ray diffraction and scanning electron microscope techniques. The powder X-ray diffraction pattern showed the high crystalline nature of the complex which in turn developed a good degree of crystallinity in the PTP composite. The average particle size was calculated as 4.655 ˚A and 3.737 ˚A for the dopant and PTP composite, respectively, by using Debye Scherrer’s equation. Thermal analysis was performed by thermogravimetric (TG) analysis, differential thermal analysis (DTA) and differential scanning calorimetry (DSC) techniques. The TG, DTA and DSC results were well-correlated. The thermal analysis revealed the high thermal stability of the dopant which in turn improved the thermal stability of the PTP composite, revealing the potential of the composite for high temperature applications.

Keywords: rare earth complex; polythiophene composite; crystallinity; thermal stability

References

  • Binnemans, K., & G¨undogan, B. (2002). Synthesis and thermal behaviour of lanthanide complexes of cholesterylacyl carbonyl benzo-15-crown-5. Journal of Rare Earths, 20, 249-255.Google Scholar

  • Cohen, S. M., Xu, J., Radkov, E., & Raymond, K. N. (2000). Synthesis and relaxation properties of mixed gadolinium hydroxypyridonate MRI contrast agents. Inorgic Chemistry, 39, 5747-5756. DOI: 10.1021/ic000563b.CrossrefGoogle Scholar

  • Gallordo, H., Conte, G., Bortoluzzi, A. J., Bechtold, I. H., Pereira, A., Quirino, W. G., Legnani, C., & Cremona, M. (2011). Synthesis, structural characterization, and photo and electroluminescence of a novel terbium(III) complex: {Tris(acetylacetonate) [1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline} terbium(III). Inorganica Chimica Acta, 365, 152-158. DOI: 10.1016/j.ica.2010.09.003.Web of ScienceCrossrefGoogle Scholar

  • Gnanakan, S. R. P., Rajasekhar, M., & Subramania, A. (2009). Synthesis of polythiophene nanoparticles by surfactant- assissted dilute polymerization method for high performance redox supercapacitors. International Journal of Electrochemical Science, 4, 1289-1301.Google Scholar

  • Jiang, H. J., Sun, W. L., & Zheng, R. H. (2006). Synthetic and magnetic properties of novel polymeric metal complexes with bis 1,10-phenanthroline ligands. European Polymer Journal, 42, 425-433. DOI: 10.1016/j.eurpolymj.2005.07.003.CrossrefGoogle Scholar

  • Khatamian, M., Fazayeli, M., & Divband, B. (2014). Preparation, characterization and photocatalytic properties of polythiophene-sensitized zinc oxide hybrid nanocomposites. Materials Science in Semiconductor Processing, 26, 540-547. DOI: 10.1016/j.mssp.2014.04.038.CrossrefGoogle Scholar

  • Leniec, G., Kaczmarek, S. M., Typek, J., Kołodziej, B., Grech, E., & Schilf, W. (2007). Magnetic and spectroscopic properties of gadolinium tripodal Schiff base complex. Solid State Sciences, 9, 267-273. DOI: 10.1016/j.solidstatesciences.2007. 02.002.CrossrefGoogle Scholar

  • Majid, K., Tabassum, R., Ahmad, S., & Singla, M. L. (2009a). Synthesis, characterization and electric properties of polythiophene composites with various amphoteric oxides. Materials Research Innovations, 13, 87-91. DOI: 10.1179/143307509x435169.CrossrefGoogle Scholar

  • Majid, K., Tabassum, R., Shah, A. F., Ahmad, S., & Singla, M. L. (2009b). Comparative study of synthesis, characterization and electric properties of polypyrrole and polythiophene composites with tellurium oxide. Journal of Materials Science: Matererials in Electronics, 20, 958-966. DOI: 10.1007/s10854-008-9817-8.Web of ScienceCrossrefGoogle Scholar

  • Miéville, P., Jaccard, H., Reviriego, F., Tripier, R., & Helm, L. (2011). Synthesis, complexation and NMR relaxation properties of Gd3+ complexes of Mes(DO3A)3. Dalton Transactions, 2011, 4260-4267. DOI: 10.1039/c0dt01597k.CrossrefGoogle Scholar

  • Najar, M. H., & Majid, K. (2013). Synthesis, characterization, electrical and thermal properties of nanocomposite of polythiophene with nanophotoadduct: a potent composite for electronic use. Journal of Materials Science: Materials in Electronics, 24, 4332-4339. DOI: 10.1007/s10854-013-1407-8.Web of ScienceCrossrefGoogle Scholar

  • Pusz, J., & Wolowiec, S. (2012). Solid compounds of Ce(III), Pr(III), Nd(III), and Sm(III) ions with chrysin. Journal of Thermal Analysis and Calorimetery, 110, 813-821. DOI: 10.1007/s10973-011-1989-4.CrossrefGoogle Scholar

  • Rafiqi, F. A., Rather, M. S., & Majid, K. (2013). Doping polyaniline with copper bis(glycinate)-Synthesis, characterization and thermal study. Synthetic Metals, 171, 32-38. DOI: 10.1016/j.synthmet.2013.03.009.CrossrefGoogle Scholar

  • Rafiqi, F. A., Rather, M. S., & Majid, K. (2014). Synthesis, characterization and thermal study of composite of polyaniline doped with multiligand urea complex of cobalt(II). Materials Research Innovations, 18, 307-313. DOI: 10.1179/1433075x13y.0000000149.CrossrefWeb of ScienceGoogle Scholar

  • Rafiqi, F. A., & Majid, K. (2015). Synthesis, characterization, luminescence properties and thermal studies of polyaniline and polythiophene composites with rare earth terbium( III) complex. Synthetic Metals, 202, 147-156. DOI: 10.1016/j.synthmet.2015.01.032.Web of ScienceCrossrefGoogle Scholar

  • Rasool, R., & Majid, K. (2014). Synthesis, characterization, thermal and electrical properties of composite of polyaniline with cobalt monoethanolamine complex. Bulletin of Material Sciences, 37, 1181-1190.Google Scholar

  • Rather, M. S., Majid, K., Wanchoo, R. K., & Singla, M. L. (2013). Nanocomposite of polyaniline with the photoadduct of potassium hexacyanoferrate and pyridine ligand: Structural, electrical, mechanical and thermal study. Synthetic Metals, 179, 60-66. DOI: 10.1016/j.synthmet.2013.07.010.Web of ScienceCrossrefGoogle Scholar

  • Rather, M. S., Majid, K., Wanchoo, R. K., & Singla, M. L. (2014). Role of photoadduct of K4Fe(CN)6 and C3H4N2 in improving thermal stability of polyaniline composite. Journal of Thermal Analysis and Calorimetery, 117, 611-619. DOI: 10.1007/s10973-014-3834-z.Web of ScienceCrossrefGoogle Scholar

  • Riri, M., Hor, M., Kamal, O., Eljaddi, T., Benjjar, A., & Hlaibi, M. (2011). New gadolinium(III) complexes with simple organic acids (oxalic, glycolic and malic acid). Journal of Material Environmental Science, 2, 303-308.Google Scholar

  • Salatelli, E., Angiolini, L., Brazzi, A., Lanzi, M., Scavetta, E., & Tonelli, D. (2010). Synthesis, characterization and electrochemical properties of new functional polythiophenes. Synthetic Metals, 160, 2681-2686. DOI: 10.1016/j.synthmet. 2010.10.026.CrossrefGoogle Scholar

  • Taha, Z. A., Ajlouni, A. M., & Al-Mustafa, J. (2013). Thermal decomposition of lanthanium(III) complexes of bis-(salicylaldehyde)-1,3-propylenediimine schiff base ligand. Chemical Papers, 67, 194-201. DOI: 10.2478/s11696-012-0262-z.CrossrefWeb of ScienceGoogle Scholar

  • Wang, D. M., Zhang, J. H., Lin, Q., Fu, L. S., Zhang, H. J., & Yang, B. (2003). Lanthanide complex/polymer composite optical resin with intense narrow band emission, high transparency and good mechanical performance. Journal of Materials Chemistry, 13, 2279-2284. DOI: 10.1039/b305024f.CrossrefGoogle Scholar

  • Want, B., & Shah, M. D. (2014). Growth and characterization of terbium fumarate heptahydrate crystals. Journal of Crystal Growth, 389, 39-46. DOI: 10.1016/j.jcrysgro.2013.11.071.CrossrefWeb of ScienceGoogle Scholar

  • Zalas, M. (2014). Gadolinium-modified titanium oxide materials for photoenergy applications: a review. Journal of Rare Earths, 32, 487-495. DOI: 10.1016/s1002-0721(14)60097-1.CrossrefWeb of ScienceGoogle Scholar

  • Zalewicz, M., & Trzesowska, A. (2004). The coupled TG- MS investigations of lanthanide (III) nitrate complexes with hexamethylenetetramine. Journal of Thermal Analysis and Calorimetery, 78, 525-534. DOI: 10.1023/b:jtan.0000046116. 43443.36.CrossrefGoogle Scholar

  • Zhong, C. F., Huang, H. L., He, A. H., & Zhang, H. L. (2008). Synthesis and luminescent properties of novel polymeric metal complexes with bis(1,10-phenanthroline) ligands. Dyes and Pigments, 77, 578-583. DOI: 10.1016/j.dyepig.2007.08. 008.CrossrefGoogle Scholar

  • Zhou, N., Ma, Y., Wang, C., Xu, G. F., Tang, J. K., Yan, S. P., & Liao, D. Z. (2010). Two tri-spin complexes based on gadolinium and nitrosyl notroxide radicals: Structure and ferromagnetic interactions. Journal of Solid State Chemistry, 183, 927-932. DOI: 10.1016/j.jssc.2010.02.012.CrossrefGoogle Scholar

  • Zhu, Y. F., Xu, S. B., Jiang, L., Pan, K. L., & Dan, Y. (2008). Synthesis and characterization of polythiophene/titanium dioxide composites. Reactive and Functional Polymers, 68, 1492-1498. DOI: 10.1016/j.reactfunctpolym.2008.07.008.CrossrefGoogle Scholar

About the article

Received: 2015-03-04

Revised: 2015-04-26

Accepted: 2015-04-28

Published Online: 2015-07-24

Published in Print: 2015-10-01


Citation Information: Chemical Papers, ISSN (Online) 1336-9075, ISSN (Print) 0366-6352, DOI: https://doi.org/10.1515/chempap-2015-0149.

Export Citation

© Institute of Chemistry, Slovak Academy of Sciences. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in