Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers

Online
ISSN
1336-9075
See all formats and pricing
More options …
Volume 69, Issue 11

Issues

Extraction products from var. ‘Soranovskii’

Sergey G. Il’yasov
  • Corresponding author
  • Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), Biysk 659322, Altai Krai, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Viktor A. Cherkashin
  • Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), Biysk 659322, Altai Krai, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gennady V. Sakovich
  • Institute for Problems of Chemical and Energetic Technologies, Siberian Branch of the Russian Academy of Sciences (IPCET SB RAS), Biysk 659322, Altai Krai, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dmitri A. Parkhomenko
  • International Tomography Centre, Siberian Branch of the Russian Academy of Sciences (ITC SB RAS), Novosibirsk 630090, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-09-01 | DOI: https://doi.org/10.1515/chempap-2015-0158

Abstract

The chemical structures of Miscanthus var. ‘Soranovskii’ lignin fractions released via extraction of lignin from the lignocellulosic feedstock using moderately heated acetone under atmospheric pressure, without acidic and alkaline catalysts, were studied. A blend of Miscanthus stems and leaves was pretreated with water under thermobaric conditions. The acetone organosolv process subsequently afforded a substance related to a lignin-like matter-acetone organosolv Miscanthus lignin (AOML). Non-destructive analytical techniques such as FTIR spectroscopy, gas chromatography-mass spectrometry, size-exclusion chromatography, and 2D NMR were used. The IR and NMR spectroscopies revealed the AOML structure to comprise all the three major types of phenylpropane units: guaiacyl (G), syringyl (S), and p-hydroxyphenyl (H). The resultant acetone-organosolv lignin exhibits good solubility in polar solvents, moderate solubility in aromatic chemicals, and is insoluble in non-polar solvents, exhibiting the physicochemical properties of a thermoplastic polymer with a softening point of 67.0°C (onset 33.0°C, endset 81.5°C).

Keywords: Miscanthus var. ‘Soranovskii’; hydrothermal treatment; depolymerisation; lignin; acetone organosolv lignin; thermoplasticity

References

  • Bauer, S., Sorek, H., Mitchell, V. D., Ibáñez, A. B., & Wemmer, D. E. (2012). Characterization of Miscanthus giganteus lignin isolated by ethanol organosolv process under reflux condition. Journal of Agricultural Food and Chemistry, 60, 8203-8212. DOI: 10.1021/jf302409d.CrossrefGoogle Scholar

  • Budaeva, V. V., Makarova, E. I., Skiba, E. A., & Sakovich, G. V. (2013). Enzymatic hydrolysis of the products of hydrothermobaric processing of Miscanthus and oat hulls. Catalysis in Industry, 5, 335-341. DOI: 10.1134/s207005041304003x.CrossrefGoogle Scholar

  • Denisova, M. N., Budaeva, V. V., & Pavlov, I. N. (2015). Pulps isolated from Miscanthus, oat hulls, and intermediate flax straw with sodium benzoate. Korean Journal of Chemical Engineering, 32, 202-205. DOI: 10.1007/s11814-014-0371-1.Web of ScienceCrossrefGoogle Scholar

  • Il’yasov, S. G., Cherkashin, V. A., & Sakovich, G. V. (2013). Depolimerizatsiya lignina gidrotermalnym metodom (Depolymerization of lignin by hydrothermal method). Chimija rastitel’nogo syr’ja (Chemistry of Plant Raw Material), 4, 21-27. DOI: 10.14258/jcprm.1304021. (in Russian) Jones, M. B., & Walsh, M. (2001). Miscanthus: For energy and fibre. London, UK: James & James.CrossrefGoogle Scholar

  • Mitrofanov, R. Yu., Budaeva, V. V., Denisova, M. N., & Sakovich, G. V. (2011). Gidrotropnyi metod polucheniya tsellyulozy iz Miscanthus (Hydrotropic method of producing pulp from Miscanthus). Chimija rastitel’nogo syr’ja (Chemistry of Plant Raw Material), 1, 25-32. (in Russian) Obolenskaya, A. V., Yelnitskaya, Z. P., & Leonovich, A. A. (1991). Laboratornye raboty po khimii drevesiny i tsellyulozy (Laboratory works on wood and cellulose chemistry: Textbook for higher educational institutions). Moscow, Russia: Ecology Publisher. (in Russian) Sannigrahi, P., Ragauskas, A. J., & Miller, S. J. (2010). Lignin structural modifications resulting from ethanol organosolv treatment of loblolly pine. Energy & Fuels, 24, 683-689. DOI: 10.1021/ef900845t.CrossrefGoogle Scholar

  • Shumny, V. K., Veprev, S. G., Nechiporenko, N. N., Goryachkovskaya, T. N., Slynko, N. M., Kolchanov, N. A., & Peltek, S. E. (2010). A new form of Miscanthus (Chinese silver grass, Miscanthus sinensis-Andersson) as a promising source of cellulosic biomass. Advances in Bioscience and Biotechnology, 1, 167-170. DOI: 10.4236/abb.2010.13023.CrossrefGoogle Scholar

  • Somerville, C., Youngs, H., Taylor, C., Davis, S. C., & Long, S. P. (2010). Feedstocks for lignocellulosic biofuels. Science, 329, 790-792. DOI: 10.1126/science.1189268.CrossrefGoogle Scholar

  • State Register of Selection Achievements Authorized for Use (2012). Miscanthus No. 8854628. State Commission of the Russian Federation for Selection Achievements Test and Protection, Moscow, Russia.Google Scholar

  • Villaverde, J. J., Li, J. B., Ek, M., Ligero, P., & de Vega, A. (2009). Native lignin structure of Miscanthus x giganteus and its changes during acetic and formic acid fractionation. Journal of Agricultural Food and Chemistry, 57, 6262-6270. DOI: 10.1021/jf900483t.CrossrefWeb of ScienceGoogle Scholar

  • Wacek, A., & Hlava, J. (1951). Vergleichende Untersuchungen an den mitWasser fällbaren Anteilen von Organosolvligninen der europäischen Fichte. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 82, 1046-1058. DOI: 10.1007/bf00899383.CrossrefGoogle Scholar

  • Wang, K., Bauer, S., & Sun, R. C. (2012). Structural transformation of Miscanthus x giganteus lignin fractionated under mild formosolv, basic organosolv, and cellulolytic enzyme conditions. Journal of Agricultural Food and Chemistry, 60, 144-152. DOI: 10.1021/jf2037399.Web of ScienceCrossrefGoogle Scholar

  • Yoshida, M., Liu, Y., Uchida, S., Kawarada, K., Ukagami, Y., Ichinose, H., Kaneko, S., & Fukuda K. (2008). Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Bioscience, Biotechnology, and Biochemistry, 72, 805-810. DOI: 10.1271/bbb.70689. CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2015-03-31

Revised: 2015-05-07

Accepted: 2015-05-15

Published Online: 2015-09-01

Published in Print: 2015-09-01


Citation Information: Chemical Papers, Volume 69, Issue 11, Pages 1445–1453, ISSN (Online) 1336-9075, ISSN (Print) 0366-6352, DOI: https://doi.org/10.1515/chempap-2015-0158.

Export Citation

© Institute of Chemistry, Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in