Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 1, 2015

Use of ZSM-5 catalyst in deoxygenation of waste cooking oil

  • Peter Lovás EMAIL logo , Pavol Hudec , Marcela Hadvinová and Aleš Ház
From the journal Chemical Papers

Abstract

This study investigated the potential use of waste cooking oil (WCO) in the production of engine fuels and valuable chemicals via catalytic cracking. WCO was processed in its pure form and in a mixture with hydrotreated vacuum gas oil (HVGO). Catalytic cracking experiments were performed using a microactivity test (MAT) (simulation of the fluid catalytic cracking environment). In cracking over the standard fluid catalytic cracking equilibrium catalyst (FCC-ECAT), the oxygen contained in the feed was consumed in the formation of CO and CO2, water and into oxygenated organic compounds (phenolics, esters, carboxylic acids, etc.), which were found in the organic phase of the liquid product. In order to remove the unwanted organic oxygenates, the catalytic system based on pure FCC-ECAT was modified by addition of the ZSM-5-based FCC catalyst. By using the mixture containing FCC-ECAT and 10 mass % of FCC-ZSM-5, it was possible to reduce the amount of organic oxygenates to almost the feasible minimum when cracking pure WCO. The effect of the catalyst mixture on cracking the feed mixture of the vacuum gas oil with 10 vol. % of WCO was manifested in the practically zero formation of organic oxygenates and in a gasoline yield comparable with vacuum gas oil (VGO) cracking

References

ASTM International (2011). Standard test method for boiling point distribution of samples with residues such as crude oils and atmospheric and vacuum residues by high temperature gas chromatography. ASTM D7169-11. West Conshohocken, PA, USA: ASTM International.Search in Google Scholar

ASTM International (2013). Standard test method for testing fluid catalytic cracking (FCC) catalysts by microactivity test. ASTM D3907-13. West Conshohocken, PA, USA: ASTM International.Search in Google Scholar

Bezergianni, S., Voutetakis, S., & Kalogianni, A. (2009). Catalytic hydrocracking of fresh and used cooking oil. Industrial & Engineering Chemistry Research, 48, 8402-8406. DOI: 10.1021/ie900445m.10.1021/ie900445mSearch in Google Scholar

Bezergianni, S., Dimitriadis, A., & Chrysikou, L. P. (2014). Quality and sustainability comparison of one- vs. two-step catalytic hydroprocessing of waste cooking oil. Fuel, 118, 300-307. DOI: 10.1016/j.fuel.2013.10.078.10.1016/j.fuel.2013.10.078Search in Google Scholar

Bielansky, P., Weinert, A., Schönberger, C., & Reichhold, A. (2011). Catalytic conversion of vegetable oils in a continuous FCC pilot plant. Fuel Processing Technology, 92, 2305-2311. DOI: 10.1016/j.fuproc.2011.07.021.10.1016/j.fuproc.2011.07.021Search in Google Scholar

Bozbas, K (2008). Biodiesel as an alternative motor fuel: Production and policies in the European Union. Renewable and Sustainable Energy Reviews, 12, 542-552. DOI: 10.1016/j.rser.2005.06.001.10.1016/j.rser.2005.06.001Search in Google Scholar

Chen, G., Liu, C.,Ma,W., Zhang, X., Li, Y., Yan, B., & Zhou, W. (2014). Co-pyrolysis of corn cob and waste cooking oil in a fixed bed. Bioresource Technology, 166, 500-507. DOI: 10.1016/j.biortech.2014.05.090.10.1016/j.biortech.2014.05.090Search in Google Scholar PubMed

Demirbas, A. (2007). Progress and recent trends in biofuels.Progress in Energy and Combustion Science, 33, 1-18. DOI: 10.1016/j.pecs.2006.06.001.10.1016/j.pecs.2006.06.001Search in Google Scholar

Deshpande, D. P., Urunkar, Y. D., & Thakare, P. D. (2012).Production of biodiesel from castor oil using acid and base catalysts. Research Journal of Chemical Sciences, 2, 51-56.Search in Google Scholar

Dias, J. M., Machado Alvim-Ferraz, M. C., Fonseca Almeida, M., Mendez Diaz, J. D., Sanchez Polo, M., & Rivera Utrilla, J. (2013). Biodiesel production using calcium manganese oxide as catalyst and different raw materials. Energy Conversion and Management, 65, 647-653. DOI: 10.1016/j. enconman.2012.09.016.Search in Google Scholar

Doronin, V. P., Potapenko, O. V., Lipin, P. V., & Sorokina, T.P. (2013). Catalytic cracking of vegetable oils and vacuum gas oil. Fuel, 106, 757-765. DOI: 10.1016/j.fuel.2012.11.027.10.1016/j.fuel.2012.11.027Search in Google Scholar

Dupain, X., Costa, D. J., Schaverien, C. J., Makkee, M., & Moulijn, J. A. (2007). Cracking of rapeseed vegetable oil under realistic FCC conditions. Applied Catalysis B: Environmental, 72, 44-61. DOI: 10.1016/j.apcatb.2006.10.005.10.1016/j.apcatb.2006.10.005Search in Google Scholar

EIA (2015). Petroleum & other liquids. Report on the consumption of petroleum products in the U.S. Washington, DC, USA: U.S. Energy Information Administration. Retrieved March 5, 2015 from http://www.eia.gov/petroleum/data.cfm#consumption and http://www.eia.gov/dnav/pet/petconspsupdcnusmbblm.htm.Search in Google Scholar

Fortes, I. C. P., & Baugh, P. J. (2004). Pyrolysis-GC/MS studies of vegetable oils from Macauba fruit. Journal of Analytical and Applied Pyrolysis, 72, 103-111. DOI: 10.1016/j.jaap.2004.03.005.10.1016/j.jaap.2004.03.005Search in Google Scholar

Horňaček, M., Hudec, P., Nociar, A., Smieškova, A., & Jakubik, T. (2010). Activity and regenerability of dealuminated zeolite Y in liquid phase alkylation of benzene with 1-alkene. Chemical Papers, 64, 469-474. DOI: 10.2478/s11696-010-0030-x.10.2478/s11696-010-0030-xSearch in Google Scholar

ISO (1978). Determination of water - Karl Fischer method (General method). ISO 760: 1978. Geneva, Switzerland: International Organization for Standardization.Search in Google Scholar

ISO (1987). Water for analytical laboratory use - Specification and test methods. ISO 3696: 1987. Geneva, Switzerland: International Organization for Standardization.Search in Google Scholar

Kunkes, E. L., Simonetti, D. A., West, R. M., Serrano-Ruiz, J. C., Gartner, C. A., & Dumesic, J. A. (2008). Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science, 322, 417-421. DOI: 10.1126/science.1159210.10.1126/science.1159210Search in Google Scholar PubMed

Lappi, H., & Alen, R. (2011). Pyrolysis of vegetable oil soaps- Palm, olive, rapeseed and castor oils. Journal of Analytical and Applied Pyrolysis, 91, 154-158. DOI: 10.1016/j.jaap.2011.02.003.10.1016/j.jaap.2011.02.003Search in Google Scholar

Li, L., Quan, K., Xu, J., Liu, F., Liu, S., Yu, S., Xie, C., Zhang, B., & Ge, X. (2013). Liquid hydrocarbon fuels from catalytic cracking of waste cooking oils using basic mesoporous molecular sieves K2O/Ba-MCM-41 as catalysts. ACS Sustainable Chemistry & Engineering, 1, 1412-1416. DOI: 10.1021/sc4001548.10.1021/sc4001548Search in Google Scholar

Li, L., Quan, K., Xu, J., Liu, F., Liu, S., Yu, S., Xie, C., Zhang, B., & Ge, X. (2014). Liquid hydrocarbon fuels from catalytic cracking of rubber seed oil using USY as catalyst. Fuel, 123, 189-193. DOI: 10.1016/j.fuel.2014.01.049.10.1016/j.fuel.2014.01.049Search in Google Scholar

Lovas, P., Hudec, P., Hadvinova, M., & Haz, A. (2015). Conversion of rapeseed oil via catalytic cracking: Effect of the ZSM-5 catalyst on the deoxygenation process. Fuel Processing Technology, 134, 223-230. DOI: 10.1016/j.fuproc.2015.01.038.10.1016/j.fuproc.2015.01.038Search in Google Scholar

Melero, J. A., Clavero, M. M., Calleja, G., Garcia, A., Miravalles, R., & Galindo, T. (2010). Production of biofuels via the catalytic cracking of mixtures of crude vegetable oils and nonedible animal fats with vacuum gas oil. Energy & Fuels, 24, 707-717. DOI: 10.1021/ef900914e.10.1021/ef900914eSearch in Google Scholar

Ooi, Y. S., Zakaria, R., Mohamed, A. R., & Bhatia, S. (2005).Catalytic conversion of fatty acids mixture to liquid fuel and chemicals over composite microporous/mesoporous catalysts.Energy & Fuels, 19, 736-743. DOI: 10.1021/ef049772x.10.1021/ef049772xSearch in Google Scholar

Phan, N. A., & Phan, T. M. (2008). Biodiesel production from waste cooking oils. Fuel, 87, 3490-3496. DOI: 10.1016/j.fuel.2008.07.008.10.1016/j.fuel.2008.07.008Search in Google Scholar

Romani, A., Ruiz, H. A., Pereira, F. B., Teixeira, J. A., & Domingues, L. (2014). Integrated approach for effective bioethanol production using whole slurry from autohydrolyzed Eucalyptus globulus wood at high-solid loadings.Fuel, 135, 482-491. DOI: 10.1016/j.fuel.2014.06.061.10.1016/j.fuel.2014.06.061Search in Google Scholar

Sadeghbeigi, R. (2000). FCC catalysts. In R. Sadeghbeigi, Fluid catalytic cracking handbook: Design, operation and troubleshooting of FCC facilities (2nd ed., Chapter 3, pp. 84-124). Woburn, MA, USA: Butterworth-Heinemann. DOI: 10.1016/b978-088415289-7/50004-4.10.1016/B978-088415289-7/50004-4Search in Google Scholar

Shin, H. Y., Lim, S. M., Kang, S. C., & Bae, S. Y. (2012). Statistical optimization for biodiesel production from rapeseed oil via transesterification in supercritical methanol. Fuel Processing Technology, 98, 1-5. DOI: 10.1016/j.fuproc.2012.01.025.10.1016/j.fuproc.2012.01.025Search in Google Scholar

Sindhu, R., Kuttiraja, M., Binod, P., Janu, K. U., Sukumaran, R. K., & Pandey, A. (2011). Dilute acid pretreatment and enzymatic saccharification of sugarcane tops for bioethanol production. Bioresource Technology, 102, 10915-10921. DOI: 10.1016/j.biortech.2011.09.066.10.1016/j.biortech.2011.09.066Search in Google Scholar PubMed

Singhabhandhu, A., & Tezuka, T. (2010a). Prospective framework for collection and exploitation of waste cooking oil as feedstock for energy conversion. Energy, 35, 1839-1847. DOI: 10.1016/j.energy.2010.01.004.10.1016/j.energy.2010.01.004Search in Google Scholar

Singhabhandhu, A., & Tezuka, T. (2010b). The waste-toenergy framework for integrated multi-waste utilization: Waste cooking oil, waste lubricating oil, and waste plastics.Energy, 35, 2544-2551. DOI: 10.1016/j.energy.2010.03.001.10.1016/j.energy.2010.03.001Search in Google Scholar

Talebian-Kiakalaieh, A., Amin, N. A. S., & Mazaheri, H. (2013). A review on novel processes of biodiesel production from waste cooking oil. Applied Energy, 104, 683-710. DOI: 10.1016/j.apenergy.2012.11.061.10.1016/j.apenergy.2012.11.061Search in Google Scholar

Taufiqurrahmi, N., Mohamed, A. R., & Bhatia, S. (2011).Production of biofuel from waste cooking palm oil using nanocrystaline zeolite as catalyst: Process optimization studies. Bioresource Technology, 102, 10686-10694. DOI: 10.1016/j.biortech.2011.08.068.10.1016/j.biortech.2011.08.068Search in Google Scholar PubMed

Triantafillidis, C. S., & Evmiridis, N. P. (1999). Performance of ZSM-5 as a fluid catalytic cracking catalyst additive: Effect of the total number of acid sites and particle size. Industrial & Engineering Chemistry Research, 38, 916-927. DOI: 10.1021/ie980395j.10.1021/ie980395jSearch in Google Scholar

Twaiq, F. A. A., Mohamad, A. R., & Bhatia, S. (2004). Performance of composite catalyst in palm oil cracking for the production of liquid fuels and chemicals. Fuel Processing Technology, 85, 1283-1300. DOI: 10.1016/j.fuproc.2003.08.003.10.1016/j.fuproc.2003.08.003Search in Google Scholar

Velmurugan, R., & Muthukumar, K. (2011). Utilization of sugarcane bagasse for bioethanol production: Sono-assisted acid hydrolysis approach. Bioresource Technology, 102, 7119-7123. DOI: 10.1016/j.biortech.2011.04.045.10.1016/j.biortech.2011.04.045Search in Google Scholar PubMed

Vu, H. X., Schneider, M., Bentrup, U., Dang, T. T., Phan, B. M. Q., Nguyen, D. A., Armbruster, U., & Martin, A. (2015). Hierarchical ZSM-5 materials for an enhanced formation of gasoline-range hydrocarbons and light olefins in catalytic cracking of triglyceride-rich biomass. Industrial & Engineering Chemistry Research, 54, 1773-1782. DOI: 10.1021/ie504519q. 10.1021/ie504519qSearch in Google Scholar

Received: 2015-4-1
Revised: 2015-5-5
Accepted: 2015-5-22
Published Online: 2015-9-1
Published in Print: 2015-9-1

© Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/chempap-2015-0159/html
Scroll to top button