Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers

Online
ISSN
1336-9075
See all formats and pricing
More options …
Volume 69, Issue 2

Issues

Preparation of ceramic γ-Al2O3–TiO2 nanofiltration membranes for desalination

Mohsen Khalili
  • Nanochemical Engineering Department, Faculty of Advanced Technologies, Shiraz University, Mollasadra St., 7134851154 Shiraz, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Samad Sabbaghi
  • Corresponding author
  • Nanochemical Engineering Department, Faculty of Advanced Technologies, Shiraz University, Mollasadra St., 7134851154 Shiraz, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohammad Mahdi Zerafat
  • Nanochemical Engineering Department, Faculty of Advanced Technologies, Shiraz University, Mollasadra St., 7134851154 Shiraz, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-12-12 | DOI: https://doi.org/10.1515/chempap-2015-0023

Abstract

As one of the most recently developed membrane separation processes, nanofiltration (NF) has found a number of industrial applications. Ceramic NF membranes are also regarded as the appropriate choice in many applications, due to their higher chemical and physical stability. In this study, the rejection of the chloride ion is investigated using bi-layered γ-Al2O3-TiO2 NF membranes based on α-alumina supports. Compression is used in preparation of the supports and sol-gel dip-coating for the top-layer formation. SEM micrographs, XRD, and nitrogen adsorption/desorption isotherms are used for membrane characterisation. The results show that the calcination temperature (600◦C) results in different crystal structures including the brookite phase of TiO2, the γ phase of Al2O3, and a combined phase of aluminium-titanium oxides. The average pore size of the membrane was identified as 1.6 nm using an adsorption/desorption isotherm. The rejection was also studied for the chloride ion, using a cross-flow filtration module. Filtration tests were carried out under different pressures, pH values, and salt concentrations; these showed a smoother behaviour particularly around the isoelectric points (IEPs) due to the dual-layer structure, with the best rejection at pH of approximately 5.

Keywords: ceramic membranes; nanofiltration; γ-alumina; titania

References

  • Alami-Younssi, S., Larbot, A., Persin, M., Sarrazin, J., & Cot, L. (1995). Rejection of mineral salts on a gamma alumina nanofiltration membrane: Application to environmental process. Journal of Membrane Science, 102, 123-129. DOI: 10.1016/0376-7388(94)00302-f.CrossrefGoogle Scholar

  • Blanc, P., Larbot, A., Palmeri, J., Lopez, M., & Cot, L. (1998). Hafnia ceramic nanofltration membranes. Part I: Preparation and characterization. Journal of Membrane Science, 149, 151-161. DOI: 10.1016/s0376-7388(98)00154-9.CrossrefGoogle Scholar

  • Burggraaf, A. J., & Cot, L. (1996). Fundamentals of inorganic membrane science and technology. Amsterdam, The Netherland: Elsevier. Google Scholar

  • Combe, C., Guizard, C., Aimar, E., & Sanchez, V. (1997). Experimental determination of four characteristics used to predict the retention of a ceramic nanofiltration membrane. Journal of Membrane Science, 129, 147-160. DOI: 10.1016/s0376-7388(96)00290-6. CrossrefGoogle Scholar

  • de Lint, W. B. S., & Benes, N. E. (2005). Separation properties of γ-alumina nanofiltration membranes compared to charge regulation model predictions. Journal of Membrane Science, 248, 149-159. DOI: 10.1016/j.memsci.2004.08.026. CrossrefGoogle Scholar

  • de Lint, W. B. S., Zivkovic, T., Benes, N. E., Bouwmeester, H. J. M., & Blank, D. H. A. (2006). Electrolyte retention of supported bi-layered nanofiltration membranes. Journal of Membrane Science, 277, 18-27. DOI: 10.1016/j.memsci.2005. 10.004.CrossrefGoogle Scholar

  • Labbez, C., Fievet, P., Szymczyk, A., Thomas, F., Simon, C., Vidonne, A., Pagetti, J., & Foissy, A. (2002a). A comparison of membrane charge of a low nanofiltration membrane determined from ionic retention and tangential streaming potential measurements. Desalination, 147, 223-229. DOI: 10.1016/s0011-9164(02)00539-8, CrossrefGoogle Scholar

  • Labbez, C., Fievet, P., Szymczyk, A., Vidonne, A., Foissy, A., & Pagetti, J. (2002b). Analysis of the salt retention of a titania membrane using the ”DSPM” model: effect of pH, salt concentration and nature. Journal of Membrane Science, 208, 315-329. DOI: 10.1016/s0376-7388(02)00310-1.CrossrefGoogle Scholar

  • Puhlfürß, P., Voigt, A., Weber, R., & Morbé, M. (2000). Microporous TiO2 membranes with a cut off <500 Da. Journal of Membrane Science, 174, 123-133. DOI: 10.1016/s0376-7388(00)00380-x.CrossrefGoogle Scholar

  • Sabbaghi, S., Maleki, R., Shariati-Niassar, M., & Zerafat, M. M. (2012). Modelling chloride ion removal from gas condensates by nanofiltration membrane separation. International Journal of Chemical and Environmental Engineering, 3(1), 30-33.Google Scholar

  • Schaep, J., Vandecasteele, C., Peeters, B., Luyten, J., Dotremont, C., & Roels, D. (1999). Characteristics and retention properties of a mesoporous γ-Al2O3 membrane for nanofiltration. Journal of Membrane Science, 163, 229-237. DOI: 10.1016/s0376-7388(99)00163-5.CrossrefGoogle Scholar

  • Skluzacek, J. M., Tejedor, M. I., & Anderson, M. A. (2006). An iron-modified silica nanofiltration membrane: Effect of solution composition on salt rejection. Microporous and Mesoporous Materials, 94, 288-294. DOI: 10.1016/j.micromeso. 2006.03.043.CrossrefGoogle Scholar

  • Tsuru, T., Hironaka, D., Yoshioka, T., & Asaeda, M. (2001). Titania membranes for liquid phase separation: effect of surface charge on flux. Separation and Purification Technology, 25, 307-314. DOI: 10.1016/s1383-5866(01)00057-0.CrossrefGoogle Scholar

  • Vacassy, R., Guizard, C., Thoraval, V., & Cot, L. (1997). Synthesis and characterization of microporous zirconia powders: Application in nanofilters and nanofiltration characteristics. Journal of Membrane Science, 132, 109-118. DOI: 10.1016/s0376-7388(97)00051-3.CrossrefGoogle Scholar

  • Van Gestel, T., Vandecasteele, C., Buekenhoudt, A., Dotremont, C., Luyten, J., Leysen, R., Van der Burggen, B., & Maes, G. (2002). Salt retention in nanofiltration with multilayer ceramic TiO2 membranes. Journal of Membrane Science, 209, 379-389. DOI: 10.1016/s0376-7388(02)00311-3.CrossrefGoogle Scholar

  • Weber, R., Chmiel, H., & Mavrov, V. (2003). Characteristics and application of new ceramic nanofiltration membranes. Desalination, 157, 113-125. DOI: 10.1016/s0011-9164(03)00390-4.CrossrefGoogle Scholar

  • Xu, Q. Y., & Anderson, M. A. (1991). Synthesis of porosity controlled ceramic membranes. Journal of Materials Research, 6, 1073-1081. DOI: 10.1557/jmr.1991.1073.CrossrefGoogle Scholar

  • Yoldas, B. E. (1975). Alumina sol preparation from alkoxides. Ceramic Bulletin, 54, 289-291.Google Scholar

  • Zerafat, M. M., Shariati-Niassar, M., Hashemi, S. J., Sabbaghi, S., Ismail, A. F., & Matsuura, T. (2013). Mathematical modelling of nanofiltration for concentrated electrolyte solutions. Desalination, 320, 17-23. DOI: 10.1016/j.desal.2013.04.015 CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2014-02-26

Revised: 2014-06-01

Accepted: 2014-06-03

Published Online: 2014-12-12

Published in Print: 2015-02-01


Citation Information: Chemical Papers, Volume 69, Issue 2, Pages 309–315, ISSN (Online) 1336-9075, DOI: https://doi.org/10.1515/chempap-2015-0023.

Export Citation

© 2015 Institute of Chemistry, Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in