Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers

More options …
Volume 69, Issue 4


Liquid–liquid extraction and cloud point extraction for spectrophotometric determination of vanadium using 4-(2-pyridylazo)resorcinol

Teodora S. Stefanova
  • Faculty of Chemistry, University of Plovdiv “Paissii Hilendarski”, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kiril K. Simitchiev
  • Faculty of Chemistry, University of Plovdiv “Paissii Hilendarski”, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kiril B. Gavazov
  • Corresponding author
  • Faculty of Chemistry, University of Plovdiv “Paissii Hilendarski”, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-03-03 | DOI: https://doi.org/10.1515/chempap-2015-0048


Liquid-liquid extraction (LLE) and cloud point extraction (CPE) of vanadium(V) ternary complexes with 4-(2-pyridylazo)resorcinol (PAR) and 2,3,5-triphenyl-2H-tetrazolum chloride (TTC) were investigated. The optimal conditions for vanadium extraction and spectrophotometric determination were identified. The composition (V : PAR : TTC) of the extracted species was 1 : 2 : 3 (optimal conditions; LLE), 2 : 2 : 2 (low reagents concentrations; LLE), 1 : 1 : 1 (short heating time; CPE), and 1 : 1 : 1 + 1 : 1 : 0 (optimal extraction conditions; CPE). LLE, performed in the presence of 1,2-diaminocyclohexane-N,N,N’,N’-tetraacetic acid and NH4F as masking agents, afforded the sensitive, selective, precise, and inexpensive spectrophotometric determination of vanadium. The absorption maximum, molar absorptivity, limit of detection, and linear working range were 559 nm, 1.95 × 105 dm3 mol−1 cm−1, 0.7 ng cm−3, and 2.2-510 ng cm−3, respectively. The procedure thus developed was applied to the analysis of drinking waters and steels. The relative standard deviations for V(V) determination were below 9.4 % (4-6 × 10−7 mass %; water samples) and 2.12 % (1-3 mass %; steel samples).

Keywords: vanadium(V); ternary complex; 2,3,5-triphenyl-2H-tetrazolium chloride; spectrophotometric analysis; liquid-liquid extraction; cloud point extraction


  • Abbas, M. N., Homoda, A.M., & Mostafa, G. A. E. (2001). First derivative spectrophotometric determination of uranium(VI) and vanadium(V) in natural and saline waters and some synthetic matrices using PAR and cetylpyridinum chloride. Analytica Chimica Acta, 436, 223-231. DOI: 10.1016/s0003-2670(01)00926-6.CrossrefGoogle Scholar

  • Azevedo Lemos, V., Souza Santos, E., Selis Santos, M., & Yamaki, R. T. (2007). Thiazolylazo dyes and their application in analytical methods. Microchimica Acta, 158, 189-204. DOI: 10.1007/s00604-006-0704-9.Web of ScienceCrossrefGoogle Scholar

  • Budevsky, O., & Johnova, L. (1965). Colorimetric determination of vanadium(V) with 4-(2-pyridylazo)-resorcinol. Talanta, 12, 291-295. DOI: 10.1016/0039-9140(65)80250-8.CrossrefGoogle Scholar

  • Chakrapani, G., Murty, D. S. R., Balaji, B. K., & Rangaswamy, R. (1993). Spectrophotometric method for the determination of vanadium in uranium rich hydrogeochemical samples using pyridyl azo resorcinol (PAR). Talanta, 40, 541-544. DOI: 10.1016/0039-9140(93)80014-i.CrossrefPubMedGoogle Scholar

  • Chwastowska, J., & Kosiarska, E. (1985). Extractive-spectrophotometric determination of vanadium traces with 4-(2- pyridylazo) resorcinol and zephiramine in plant materials. Chemia Analityczna (Warsaw), 30(3), 395-400.Google Scholar

  • Filik, H., Berker, K. I., Balkis, N., & Apak, R. (2004). Simultaneous preconcentration of vanadium(V/IV) species with palmitoyl quinolin-8-ol bonded to amberlite XAD 2 and their separate spectrophotometric determination with 4-(2- pyridylazo)-resorcinol using CDTA as masking agent. Analytica Chimica Acta, 518, 173-179. DOI: 10.1016/j.aca.2004. 05.012.CrossrefGoogle Scholar

  • Gavazov, K., Simeonova, Z., & Alexandrov, A. (1998). Extraction- spectrophotometric study of the system vanadium(V) - 4-(2-pyridylazo)resorcinol - 2,2_,5,5_-tetraphenyl-3,3_-(pbiphenyl) ditetrazolium chloride - water - chloroform. Determination of vanadium in steels. Analytical Laboratory, 7(3), 127-133.Google Scholar

  • Gavazov, K., Simeonova, Z., & Alexandrov, A. (2000). Extraction spectrophotometric determination of vanadium in natural waters and aluminium alloys using pyridyl azo resorcinol (PAR) and iodo-nitro-tetrazolium chloride (INT). Talanta, 52, 539-544. DOI: 10.1016/s0039-9140(00)00405-7.CrossrefPubMedGoogle Scholar

  • Gavazov, K., Lekova, V., Patronov, G., & T¨urkyilmaz, M. (2006a). Extractive-spectrophotometric determination of vanadium( IV/V) in catalysts using 4-(2-pyridylazo)-resorcinol and tetrazolium violet. Chemia Analityczna (Warsaw), 51(1), 221-227.Google Scholar

  • Gavazov, K., Lekova, V., & Patronov, G. (2006b). A ternary complex of vanadium(V) with 4-(2-pyridylazo)-resorcinol and thiazolyl blue and its application. Acta Chimica Slovenica, 53, 506-511.Google Scholar

  • Gavazov, K. B., Dimitrov, A. N., & Lekova, V. D. (2007). The use of tetrazolium salts in inorganic analysis. Russian Chemical Reviews, 76, 169-179. DOI: 10.1070/rc2007v076n02abeh 003655.CrossrefGoogle Scholar

  • Gavazov, K. B., & Stefanova, T. S. (2014). Liquid-liquid extraction-spectrophotometric investigations of three ternary complexes of vanadium. Croatica Chemica Acta, in press.Web of ScienceGoogle Scholar

  • He, X.W., Tubino, M., & Rossi, A. V. (1999). Selective and sensitive spectrophotometric determination of total vanadium with hydrogen peroxide and 4-(2-pyridylazo)-resorcinol. Analytica Chimica Acta, 389, 275-280. DOI: 10.1016/s0003-2670(99)00126-9.CrossrefGoogle Scholar

  • Itoh, J. i., Yotsuyanagi, T., & Aomura, K. (1975). Spectrophotometric studies on the equilibria of vanadium(V)-4-(2- pyridylazo)-resorcinol-polyaminopolycarboxylate systems. Analytica Chimica Acta, 77, 229-237. DOI: 10.1016/s0003-2670(01)95174-8.CrossrefGoogle Scholar

  • Ivanov, V. M. (2005). Ninety years of using azo compounds of the pyridine series as analytical reagents. Zhurnal Analiticheskoi Khimii, 60, 549-554. (in Russian) Karpova, O. I., Lukachina, V. V., & Pilipenko, A. T. (1973). Vanadium-PAR complexes in acidic medium. Ukrainskii Khimicheskii Zhurnal, 39(2), 194-195.Google Scholar

  • Kawahata, M., Mochizuki, H., Kajiyama, R., & Ichihashi, K. (1965). Spectrophotometric determination of vanadium with 4-(2-pyridylazo)-resorcinol. Bunseki Kagaku, 14, 348-351. DOI: 10.2116/bunsekikagaku.14.348. (in Japanese) CrossrefGoogle Scholar

  • Lobanov, F. I., Nurtaeva, G. K., & Ergozhin, E. E. (1983). Extraction of metal complexes with hydroxyazo compounds of pyridine. Alma-Ata, URSS: Nauka. (in Russian) Google Scholar

  • Lukachina, V. V., Pilipenko, A. T., & Karpova, O. I. (1973). Three-component complexes of vanadium with 4-(2-pyridylazo) resorcinol and hydroxylamine. Zhurnal Analiticheskoi Khimii, 28, 86-93. (in Russian) Ma, J. P., Du, Z. T., Xu, J., Chu, Q. H., & Pang, Y. (2011). Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5- diformylfuran, and synthesis of a fluorescent material. Chem- SusChem, 4, 51-54. DOI: 10.1002/cssc.201000273.CrossrefGoogle Scholar

  • Marczenko, Z., & Balcerzak, M. (2000). Separation, preconcentration and spectrophotometry in inorganic analysis (Vol. 10). Amsterdam, The Netherlands: Elsevier.Google Scholar

  • Marczenko, Z., & Balcerzak, M. (2007). Metody spektrofotometrii v UF i vidimoj oblastyakh v neorganicheskom analize.Google Scholar

  • Moscow, Russia: Binom. Laboratoriya znanij. (in Russian) Minczewski, J., Chwastowska, J., & Mai, P. H. (1975). Spectrophotometric determination of trace amounts of vanadium by formation of the vanadium-4-(2-pyridylazo)resorcinol (PAR)-crystal violet complex: application to the analysis of plant materials. Analyst, 100, 708-715. DOI: 10.1039/an975 0000708.CrossrefGoogle Scholar

  • Morgen, E. A., & Dimova, L. M. (1983). Photometric determination of vanadium with 4-(2-pyridylazo)resorcinol in aqueos-propanolic medium in the presence of titanium. Zhurnal Analiticheskoi Khimii, 38, 2181-2186. (in Russian) Morgen, E. A., & Dimova, L. M. (1984). Extraction-photometric determination of vanadium with 4-(2-pyridylazo)resorcinol in the presence of tetrazolium chloride. Zavodskaya Laboratoriya, 50(10), 7-9. (in Russian) Nishimura, M., Matsunaga, K., Kudo, T., & Obara, F. (1973). Spectrophotometric determination of vanadium in sea water. Analytica Chimica Acta, 65, 466-468. DOI: 10.1016/s0003-2670(01)82513-7.CrossrefGoogle Scholar

  • Pyrzy´nska, K., & Wierzbicki, T. (2004). Determination of vanadium species in environmental samples. Talanta, 64, 823-829. DOI: 10.1016/j.talanta.2004.05.007.CrossrefGoogle Scholar

  • Pyrzy´nska, K. (2005). Recent developments in spectrophotometric methods for determination of vanadium. Microchimica Acta, 149, 159-164. DOI: 10.1007/s00604-004-0304-5.CrossrefGoogle Scholar

  • Pytlakowska, K., Kozik, V., & Dabioch, M. (2013). Complexforming organic ligands in cloud-point extraction of metal ions: A review. Talanta, 110, 202-228. DOI: 10.1016/j.talanta. 2013.02.037.CrossrefGoogle Scholar

  • Rostampour, L., & Taher, M. A. (2008). Determination of trace amounts of vanadium by UV-vis spectrophotometric after separation and preconcentration with modified natural clinoptilolite as a new sorbent. Talanta, 75, 1279-1283. DOI: 10.1016/j.talanta.2008.01.045.CrossrefWeb of ScienceGoogle Scholar

  • Sabnis, R. W. (2010). Handbook of biological dyes and stains: Synthesis and industrial applications. Hoboken, NJ, USA: Wiley.Google Scholar

  • Sanchez Rojas, F., & Bosch Ojeda, C. (2009). Recent development in derivative ultraviolet/visible absorption spectrophotometry: 2004-2008: A review. Analytica Chimica Acta, 635, 22-44. DOI: 10.1016/j.aca.2008.12.039.Web of ScienceCrossrefGoogle Scholar

  • Sanna, D., Serra, M., Micera, G., & Garribba, E. (2014). Interaction of antidiabetic vanadium compounds with hemoglobin and red blood cells and their distribution between plasma and erythrocytes. Inorganic Chemistry, 53, 1449-1464. DOI: 10.1021/ic402366x.Web of SciencePubMedCrossrefGoogle Scholar

  • Şenöz, H. (2012). The chemistry of formazans and tetrazolium salts. Hacettepe Journal of Biology and Chemistry, 40, 293-301.Google Scholar

  • Shijo, Y., & Takeuchi, T. (1965). Spectrophotometric determination of vanadium with 4-(2-pyridylazo) resorcinol. Bunseki Kagaku, 14, 115-119. DOI: 10.2116/bunsekikagaku.14.115.CrossrefGoogle Scholar

  • Simitchiev, K., Stefanova, V., Kmetov, V., Andreev, G., Kovachev, N., & Canals, A. (2008). Microwave-assisted cloud point extraction of Rh, Pd and Pt with 2-mercaptobenzothiazole as preconcentration procedure prior to ICP-MS analysis of pharmaceutical products. Journal of Analytical Atomic Spectrometry, 23, 717-726. DOI: 10.1039/b715133k.Web of ScienceCrossrefGoogle Scholar

  • Široki, M., & Djordjevi´c, C. (1971). Spectrophotometric determination of vanadium with 4-(2-pyridylazo)resorcinol by extraction of tetraphenylphosphonium and arsonium salts. Analytica Chimica Acta, 57, 301-310. DOI: 10.1016/s0003-2670(01)95117-7.CrossrefGoogle Scholar

  • Taylor, M. J. C., & van Staden, J. F. (1994). Spectrophotometric determination of vanadium(IV) and vanadium(V) in each qther’s presence. Review. Analyst, 119, 1263-1276. DOI: 10.1039/an9941901263.CrossrefGoogle Scholar

  • Uslu, M., Ulut¨urk, H., Yartaı, A., & D¨oker, S. (2013). A sensitive method for selective determination of vanadium species by dispersive liquid-liquid microextraction (DLLME) with spectrophotometric detection. Toxicological & Environmental Chemistry, 95, 1638-1649. DOI: 10.1080/02772248.2014.896920.CrossrefGoogle Scholar

  • Vachirapatama, N., Jirakiattikul, Y., Dicinoski, G., Townsend, A. T., & Haddad, P. R. (2005). On-line preconcentration and sample clean-up system for the determination of vanadium as a 4-(2-pyridylazo) resorcinol-hydrogen peroxide ternary complex in plant tissues by ion-interaction high performance liquid chromatography. Analytica Chimica Acta, 543, 70-76. DOI: 10.1016/j.aca.2005.04.021.CrossrefGoogle Scholar

  • Valero, J. (1991). Determinacion fotometrica de vanadio mediante sistemas ternarios. Boletín de la Sociedad Química del Perú, 57, 23-41. (in Spanish) Yerramilli, A., Kavipurapu, C. S., Manda, R. R., & Pillutha, C. M. (1986). Extractive spectrophotometric method for the determination of vanadium(V) in steels and titanium base alloy. Analytical Chemistry, 58, 1451-1453. DOI: 10.1021/ac00298a040.CrossrefGoogle Scholar

  • Yerramilli, A., Manda, R. P. R., Kumar, P. V. S., Kavipurapu, C. S., & Rao, B. V. (1990). Selective and sensitive extraction spectrophotometric method for the determination of vanadium(V) as a mixed ligand complex with Nphenyl benzohydroxamic acid and 4-(2-pyridylazo)resorcinol in non-aqueous media. Microchimica Acta, 100, 87-94. DOI: 10.1007/bf01244503.CrossrefGoogle Scholar

  • Zhou, Z. M., Mao, D. S., & Ye, C. X. (1997). Mobile equilibrium method for determining composition and stability constant of coordination compounds of the form MmRn. Journal of Rare Earths, 15, 216-219. Google Scholar

About the article

Received: 2014-06-19

Revised: 2014-08-16

Accepted: 2014-08-16

Published Online: 2015-03-03

Published in Print: 2015-04-01

Citation Information: Chemical Papers, Volume 69, Issue 4, Pages 495–503, ISSN (Online) 1336-9075, ISSN (Print) 0366-6352, DOI: https://doi.org/10.1515/chempap-2015-0048.

Export Citation

© 2015 Institute of Chemistry, Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in