Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers


IMPACT FACTOR 2016: 1.258

SCImago Journal Rank (SJR) 2016: 0.348
Source Normalized Impact per Paper (SNIP) 2016: 0.533

Online
ISSN
1336-9075
See all formats and pricing
More options …
Volume 69, Issue 8 (Aug 2015)

Issues

Application of polypyrrole nanowires for the development of a tyrosinase biosensor

Jolanta Kochana
  • Corresponding author
  • Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Katarzyna Hnida
  • Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland
  • Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Kawiory 30, 30-059 Kraków, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Grzegorz Sulka
  • Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Paweł Knihnicki
  • Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joanna Kozak
  • Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Agnieszka Gilowska
  • Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-05-15 | DOI: https://doi.org/10.1515/chempap-2015-0114

Abstract

Polypyrrole nanowires (PPyNWs) were fabricated and examined as a structural component of amperometric biosensor matrix. An enzyme, tyrosinase (TYR), was immobilized onto PPyNWs using glutaraldehyde (GA). Matrix composite morphology was investigated using scanning electron microscopy. Electrochemical behavior of the prepared PPyNWs/GA/TYR biosensor towards catechol was studied and the assessment of its analytical characteristics was carried out taking into account linear range, sensitivity, repeatability, reproducibility and operational stability.

Keywords: polypyrrole nanowires; conductive polymers; biosensor; tyrosinase; immobilization

References

  • Apetrei, C., Rodriguez-Mendez, M. L., & De Saja, J. A. (2011). Amperometric tyrosinase based biosensor using an electropolymerized phosphate-doped polypyrrole film as an immobilization support. Application for detection of phenolic compounds. Electrochimica Acta, 56, 8919-8925. DOI: 10.1016/j.electacta.2011.07.127.CrossrefWeb of ScienceGoogle Scholar

  • Bai, S. L., Zhang, K. W., Sun, J.H., Zhang, D. F., Luo,R.X., Li, D. Q., & Liu, C. C. (2014). Polythiophene-WO3 hybrid architectures for low-temperature H2S detection. Sensors and Actuators B, 197, 142-148. DOI: 10.1016/j.snb.2014.02.038.Google Scholar

  • Cernat, A., Le Goff, A., Holzinger, M., Sandulescu, R., & Cosnier, S. (2014). Micro- to nanostructured poly(pyrrolenitrilotriacetic acid) films via nanosphere templates: Applications to 3D enzyme attachment by affinity interactions. Analytical and Bioanalytical Chemistry, 406, 1141-1147. DOI: 10.1007/s00216-013-7135-3.CrossrefWeb of ScienceGoogle Scholar

  • Ćirić-Marjanović, G., Pašti I., Gavrilov, N., Janošević, A., & Mentus, S. (2013). Carbonised polyaniline and polypyrrole: Towards advanced nitrogen-containing carbon materials. Chemical Papers, 67, 781-813. DOI: 10.2478/s11696-013-0312-1.Web of ScienceCrossrefGoogle Scholar

  • ElKaoutit, M., Naranjo-Rodriguez, I., Dominguez, M., & Hidalgo-Hidalgo-de-Cisneros, J. L. (2011). Bio-functionalization of electro-synthesized polypyrrole surface by heme enzyme using a mixture of Nafion and glutaraldehyde as synergetic immobilization matrix: Conformational characterization and electrocatalytic studies. Applied Surface Science, 257, 10926-10935. DOI: 10.1016/j.apsusc.2011.08.009.Web of ScienceCrossrefGoogle Scholar

  • Hnida, K. E., Socha, R. P., & Sulka, G. D. (2013). Polypyrrole-silver composite nanowire arrays by cathodic co-deposition and their electrochemical properties. The Journal of Physical Chemistry C, 117, 19382-19392. DOI: 10.1021/jp4038304.CrossrefGoogle Scholar

  • Hamilton, A., & Breslin, C. B. (2014). The development of a novel urea sensor using polypyrrole. Electrochimica Acta, 145, 19-26. DOI: 10.1016/j.electacta.2014.08.052.CrossrefGoogle Scholar

  • Han, R. X., Cui, L., Ai, S. Y., Yin, H. S., Liu, X. G., & Qiu, Y. Y. (2012). Amperometric biosensor based on tyrosinase immobilized in hydrotalcite-like compounds film for the determination of polyphenols. Journal of Solid State Electrochemistry, 16, 449-456. DOI: 10.1007/s10008-011-1352-5.Web of ScienceCrossrefGoogle Scholar

  • Kochana, J., Kozak, J., Skrobisz, A., & Wo´zniakiewicz, M. (2012). Tyrosinase biosensor for benzoic acid inhibitionbased determination with the use of a flow-batch monosegmented sequential injection system. Talanta, 96, 147-152. DOI: 10.1016/j.talanta.2011.12.009.Web of ScienceCrossrefGoogle Scholar

  • Krzyczmonik, P., Socha, E., & Skrzypek, S. (2015). Immobilization of glucose oxidase on modified electrodes with composite layers based on poly(3,4-ethylenedioxythiophene). Bioelectrochemistry, 101, 8-13. DOI: 10.1016/j.bioelechem.2014.06.009.CrossrefWeb of ScienceGoogle Scholar

  • Li, X. R., Ren, T. K., Wang, A., & Ji, X. P. (2013). Gold nanoparticles-enhances amperometric tyrosinase biosensor based on three-dimensional sol-gel film-modified gold electrodes. Analytical Sciences, 29, 473-477. DOI: 10.2116/analsci.29.473.CrossrefWeb of ScienceGoogle Scholar

  • Mai, A. T., Duc, T. P., Thi, X. C., Nguyen, M. H., & Nguyen, H. H. (2014). Highly sensitive DNA sensor based on polypyrrole nanowire. Applied Surface Science, 309, 285-289. DOI: 10.1016/j.apsusc.2014.05.032.CrossrefWeb of ScienceGoogle Scholar

  • Medina-Plaza, C., de Saja, J. A., & Rodriguez-Mendez, M. L. (2014). Bioelectronic tongue based on lipidic nanostructured layers containing phenol oxidases and lutetium bisphthalocyanine for the analysis of grapes. Biosensors and Bioelectronics, 57, 276-283. DOI: 10.1016/j.bios.2014.02.023.Web of ScienceCrossrefGoogle Scholar

  • Mosnačkova, K., Chehimi, M., Fedorko, P., & Omastova, M. (2013). Polyamide grafted with polypyrrole: Formation, properties and stability. Chemical Papers, 67, 979-994. DOI: 10.2478/s11696-012-0305-5.CrossrefWeb of ScienceGoogle Scholar

  • Nowicka, A. M., Fau, M., Rapecki, T., & Donten, M. (2014). Polypyrrole-Au nanoparticles composite as suitable platform for DNA biosensor with electrochemical impedance spectroscopy detection. Electrochimica Acta, 140, 65-71. DOI: 10.1016/j.electacta.2014.03.187.CrossrefGoogle Scholar

  • Park, E. S., Jang, D. H., Lee, Y. I., Jung, C. W., Lim, D. W., Kim, B. S., Jeong, Y. K., Myung, N. V., & Choa, Y. H. (2014). Fabrication and sensing property for conducting polymer nanowire-based biosensor for detection of immunoglobulin G. Research on Chemical Intermediates, 40, 2565-2570. DOI: 10.1007/s11164-014-1669-7.CrossrefWeb of ScienceGoogle Scholar

  • Srinives, S., Sarkar, T., & Mulchandani, A. (2014). Primary amine-functionalized polyaniline nanothin film sensor for detecting formaldehyde. Sensors and Actuators B, 194, 255-259. DOI: 10.1016/j.snb.2013.12.079.Web of ScienceCrossrefGoogle Scholar

  • Sulka, G. D., Hnida, K., & Brzozka, A. (2013). pH sensors based on polypyrrole nanowire arrays. Electrochimica Acta, 104, 536-541. DOI: 10.1016/j.electacta.2012.12.064.CrossrefWeb of ScienceGoogle Scholar

  • Tran, T. L., Chu, T. X., Huynh, D. C., Luu, T. H. T.,&Mai, A. T. (2014). Effective immobilization of DNA for development of polypyrrole nanowires based biosensor. Applied Surface Science, 314, 260-265. DOI: 10.1016/j.apsusc.2014.06.068.CrossrefWeb of ScienceGoogle Scholar

  • Vicentini, F. C., Janegitz, B. C., Brett, C. M. A., & Fatibello-Filho, O. (2013). Tyrosinase biosensor based on a glassy carbon electrode modified with multi-walled carbon nanotubes and 1-butyl-3-methylimidazolium chloride within a dihexadecylphosphate film. Sensors and Actuators B, 188, 1101-1108. DOI: 10.1016/j.snb.2013.07.109.Web of ScienceCrossrefGoogle Scholar

  • Xu, G. Q., Adeloju, S. B., Wu, Y. C., & Zhang, X. Y. (2012). Modification of polypyrrole nanowires array with platinum nanoparticles and glucose oxidase for fabrication of a novel glucose biosensor. Analytica Chimica Acta, 755, 100-107. DOI: 10.1016/j.aca.2012.09.037.CrossrefWeb of ScienceGoogle Scholar

  • Zhang, L., Meng, F. L., Chen, Y., Liu, J. Y., Sun, Y. F., Luo, T., Li, M. Q., & Liu, J. H. (2009). A novel ammonia sensor based on high density, small diameter polypyrrole nanowire arrays. Sensors and Actuators B, 142, 204-209. DOI: 10.1016/j.snb.2009.07.042. CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2014-11-27

Revised: 2015-02-09

Accepted: 2015-02-13

Published Online: 2015-05-15

Published in Print: 2015-08-01


Citation Information: Chemical Papers, ISSN (Online) 1336-9075, ISSN (Print) 0366-6352, DOI: https://doi.org/10.1515/chempap-2015-0114.

Export Citation

© Institute of Chemistry, Slovak Academy of Sciences. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in