Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers

More options …
Volume 70, Issue 10


Possible role of hydrolytic enzymes (Sap, Kex2) in Candida albicans response to aromatic compounds bearing a sulfone moiety

Małgorzata Bondaryk
  • National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ilona Grabowska-Jadach / Zbigniew Ochal / Grażyna Sygitowicz
  • Department of Laboratory Medical Diagnostics, Medical University of Warsaw, Banacha 1, 02-097 Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Monika Staniszewska
  • Corresponding author
  • National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-25 | DOI: https://doi.org/10.1515/chempap-2016-0072


Hydrolytic enzymes e.g., Saps and KEX2 are, due to their role in Candida virulence, considered important targets for new synthetic inhibitors. MICTI and MICPI values indicate that disruption of SAP1-3 significantly increases the resistance of Candida mutants to β-ketosulfone (1). Contrariwise, sap123∆ showed sensitive phenotype to halogenated methylphenyl sulfone (2). Anticandidal potency of 2 differed in the Candida cells of kex2∆. Sulfone is the most effective agent against the Candida albicans kex2∆ double mutant (MICTI of 0.5 μg mL–1). Up-regulation of KEX2 mediated the resistance of sap4-6∆ towards 2. Both sulfones tested reduced the adhesion of the wild type cells significantly (P < 0.05). Contrariwise, sap123∆ showed significantly enhanced adhesion capability when 1 was used (P < 0.05). Both sulfones had weak fungicidal effect on mature C albicans biofilms. It was shown that the uptake of IP correlates with the membrane perturbations caused by 1 in the blastoconidial cells. Sulfones were found to disturb the basic developmental phases of biofilm growth: adhesion and morphogenesis. Altered KEX2 levels for 1 can be caused by the compensatory mechanism for the maintenance of cell wall integrity and morphogenesis. KEX2 decreases the antifungal activity of sulfones. Sulfones affecting the crucial virulence factors of Candida can even eliminate these fungal infections.

Keywords: antifungal activity; Candida albicans; KEX2 serine protease; secreted aspartyl proteinases (Saps); sulfone derivatives


  • Albrecht, A., Felk, A., Pichova, I., Naglik, J. R., Schaller, M., de Groot, P., MacCallum, D., Odds, F. C., Schäfer, W., Klis, F., Monod, M., & Hube, B. (2006). Glycosylphosphatitylinositol-anchored proteases of Candida albicans target proteins necessary for both cellular processes and host-pathogen interactions. Journal of Biological Chemistry, 281, 688–694. .CrossrefGoogle Scholar

  • Amberg, D. C., Burke, D. J., & Strathern, J. N. (2005). Yeast RNA isolations, techniques and protocols #6. In D. C. Am-berg, D. J. Burke, & J. N. Strathern (Eds.), Methods in yeast genetics (pp. 127–131). Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press.Google Scholar

  • Bader, O., Schaller, M., Klein, S., Kukula, J., Haack, K., Mühlschlegel, F., Korting, H. C., Schäfer, W., & Hube, B. (2001). The KEX2 gene of Candida glabrata is required for cell surface integrity. Molecular Microbiology, 41, 1431–1444. .CrossrefGoogle Scholar

  • Beggah, S., Léchenne, B., Reichard, U., Foundling, S., & Monod, M. (2000). Intra- and intermolecular events direct the propeptide-mediated maturation of the Candida albicans secreted aspartic proteinase Sap1p. Microbiology, 146, 2765– 2773. .CrossrefGoogle Scholar

  • Bizzerra, F. C., Melo, A. S. A., Katchburian, E., Freymüller, E., Straus, A. H., Takahashi, H. K., & Colombo, A. L. (2011). Changes in cell wall synthesis and ultrastructure during paradoxical growth effect of caspofungin on four different Candida species. Antimicrobial Agents and Chemotherapy, 55, 302–310. .CrossrefGoogle Scholar

  • Bondaryk, M., Ochal, Z., & Staniszewska, M. (2014). Sul-fone derivatives reduce growth, adhesion and aspartic protease SAP2 gene expression. World Journal of Microbiology and Biotechnology, 30, 2511–2521. .CrossrefGoogle Scholar

  • Bondaryk, M., Lukowska-Chojnacka, E., & Staniszewska, M. (2015). Tetrazole activity against Candida albicans. The role of KEX2 mutations in the sensitivity to (±)-1-[5-(2-chlorophenyl)-2H-tetrazol-2-yl]propan-2-yl acetate. Bioorganic & Medicinal Chemistry Letters, 25, 2657–2663. .CrossrefGoogle Scholar

  • Bruno, V. M., Shetty, A. C., Yano, J., Fidel, P. L., Jr., Noverr, M. C., & Peters, B. M. (2015). Transcriptomic analysis of vulvovaginal candidiasis identifies a role for the NLRP3 inflammasome. mBio, 6, e00182-15. .CrossrefGoogle Scholar

  • Buu, L. M., & Chen, Y. C. (2013). Sap6, a secreted aspartyl proteinase, participates in maintenance the cell wall surface integrity of Candida albicansJournal of Biomedical Science, 20, 101. .CrossrefGoogle Scholar

  • Buu, L. M., & Chen, Y. C. (2014). Impact of glucose levels on expression of hypha-associated secreted aspartyl proteinases in Candida albicansJournal of Biomedical Science, 21, 22. .CrossrefGoogle Scholar

  • Carvalho-Pereira, J., Vaz, C., Carneiro, C., Pais, C., & Sam-paio, P. (2015). Genetic variability of Candida albicans Sap8 propeptide in isolates from different types of infection. Biomed Research International, 2015, 148343. .CrossrefGoogle Scholar

  • Clinical and Laboratory Standards Institute (2008). Refe renc e method for broth dilution antifungal susceptibility testing of yeasts. M27-A3. Wayne, PA, USA: Clinical and Laboratory Standards Institute.Google Scholar

  • Correira, A., Lermann, U., Teixeira, L., Cerca, F., Botelho, S., da Costa, R. M., Sampaio, P., Gärtner, F., Morschhäuser, J., Vilanova, M., & Pais, C. (2010). Limited role of secreted aspartyl proteinases Sap1 to Sap6 in Candida albicans virulence and host immune response in murine hematogenously disseminated candidiasis. Infection and Immunity, 78, 4839– 4849. .CrossrefGoogle Scholar

  • Costa-de-Oliveira, S., Isabel, M., Miranda, I. M., Silva-Diasa, A., Silva, A. P., Rodriguesa, A. G., & Pina-Vaza, C. (2015). Ibuprofen potentiates the in vivo antifungal activity of fluconazole against Candida albicans murine infection. Antimicrob Agents Chemother, 59, 4289–4292. .CrossrefGoogle Scholar

  • Cuéllar-Cruz, M., Vega-González, A., Mendoza-Novelo, B., López-Romero, E., Ruiz-Baca, E., Quintanar-Escorza, M. A., & Villagómez-Castro, J. C. (2012). The effect of biomaterials and antifungals on biofilm formation by Candida species: a review. European Journal of Clinical Microbiology and Infectious Diseases, 31, 2513–2527. .CrossrefGoogle Scholar

  • De Bernardis, F., Liu, H., O’Mahony, R., La Valle, R., Bar-tollino, S., Sandini, S., Grant, S., Brewis, N., Tomlinson, I., Basset, R. C., Holton, J., Roitt, I. M., & Cassone, A. (2007). Human domain antibodies against virulence traits of Candida albicans inhibit fungus adherence to vaginal epithelium and protect against experimental vaginal candidiasis. Journal of Infectious Diseases, 195, 149–157. .CrossrefGoogle Scholar

  • Delbrück, S., & Ernst, J. F. (1993). Morphogenesis-independent regulation of actin transcript levels in the pathogenic yeast Candida albicansMolecular Microbiology, 10, 859–866. .CrossrefGoogle Scholar

  • Dunkel, N., & Morschhäuser, J. (2011). Loss of heterozygosity at an unlinked genomic locus is responsible for the phenotype of a Candida albicans sap4∆sap5∆sap6∆ mutant. Eukaryot Cell, 10, 54–62. .CrossrefGoogle Scholar

  • El-Kirat-Chatel, S., Beaussart, A., Alsteens, D., Jackson, D. N., Lipke, P. N., & Dufr˛ene, Y. F. (2013). Nanoscale analysis of caspofungin-induced cell surface remodelling in Candida albicansNanoscale, 7, 1105–1115. .CrossrefGoogle Scholar

  • Fonzi, W. A., & Irwin, M. Y. (1993). Isogenic strain construction and gene mapping in Candida albicansGenetics, 134, 717– 728.Google Scholar

  • Garibotto, F. M., Garro, A. D., Masman, M. F., Rodríguez, A. M., Luiten, P. G. M., Raimondi, M., Zacchino, S. A., Somlai, C, Penke, B., & Enriz, R. D. (2010). New small-size peptides possessing antifungal activity. Bioorganic & Medicinal Chemistry, 18, 158–167. .CrossrefGoogle Scholar

  • Gillum, A. M., Tsay, E. Y. H., & Kirsch, D. R. (1984). Isolation of the Candida albicans gene for orotidine-5’-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Molecular & General Genetics, 198, 179–182. .CrossrefGoogle Scholar

  • Gregori, C., Glaser, W., Frohner, I. E., Reinoso-Martín, C., Rupp, S., Schüller, C., & Kuchler, K. (2011). Efg1 controls caspofungin-induced cell aggregation of Candida albicans through the adhesin Als1. Eukaryotic Cell, 10, 1694– 1704. .CrossrefGoogle Scholar

  • Jacobsen, I. D., Wilson, D., Wächtler, B., Brunke, S., Naglik, J. R., & Hube, B. (2012). Candida albicans dimorphism as a therapeutic target. Expert Review of Anti-Infective Therapy, 10, 85–93. .CrossrefGoogle Scholar

  • Jung, U. S., Sobering, A. K., Romeo, M. J., & Levin, D. E. (2002). Regulation of the yeast Rlm1 transcription factor by the Mpk1 cell wall integrity MAP kinase. Molecular Microbiology, 46, 781–789. .CrossrefGoogle Scholar

  • Korzyn´ski, M. D., Borys, M., Bialek, J., & Ochal, Z. (2014). A novel method for the synthesis of aryl trihalomethyl sulfones and their derivatization: the search for new sul-fone fungicides. Tetrahedron Letters, 55, 745–748. .CrossrefGoogle Scholar

  • Kumar, R., & Shukla, P. K. (2010). Amphotericin B resistance leads to enhanced proteinase and phospholipase activity and reduced germ tube formation in Candida albicans. Fungal Biology, 114, 189–197. .CrossrefGoogle Scholar

  • Kumar, R., Saraswat, D., Tati, S., & Edgerton, M. (2015). Novel aggregation properties of Candida albicans secreted aspartyl proteinase Sap6 mediates virulence in oral candidiasis. Infection and Immunity, 83, 2614–2626. .CrossrefGoogle Scholar

  • Kuo, Z. Y., Chuang, Y. J., Chao, C. C., Liu, F. C., Lan, C. Y., & Chen, B. S. (2013). Identification of infection-and defense-related genes via a dynamic host-pathogen interaction network using a Candida albicans-Zebrafish infection model. Journal of Innate Immunity, 5, 137–152. .CrossrefGoogle Scholar

  • Lermann, U., & Morschhäuser, J. (2008). Secreted aspartic proteases are not required for invasion of reconstituted human epithelia by Candida albicans. Microbiology, 154, 3281–3295. .CrossrefGoogle Scholar

  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of rela tive gene expression data using real-time quantitative PCR and the 2~ method. Methods, 25, 402–408. .CrossrefGoogle Scholar

  • Ma, C., Du, F., Yan, L., He, G., He, J., Wang, C., Rao, G., Jiang, Y., & Xu, G. (2015). Potent activities of roemerine against Candida albicans and the underlying mechanisms. Molecules, 20, 17913–17928. .CrossrefGoogle Scholar

  • Majoros, L., Kardos, G., Szabó, B., & Sipiczki, M. (2005). Caspofungin susceptibility testing of Candida inconspicua: correlation of different methods with the minimal fungicidal concentration. Antimicrobial Agents and Chemotherapy, 49, 3486–3488. .CrossrefGoogle Scholar

  • Mayer, F. L., Wilson, D., & Hube, B. (2013). Candida albicans pathogenicity mechanisms. Virulence, 4, 119–128. .CrossrefGoogle Scholar

  • Miranda, T. T., Vianna, C. R., Rodrigues, L., Rosa, C. A., & Corr˛ea, A., Jr. (2015). Differential proteinase patterns among Candida albicans strains isolated from root canal and lingual dorsum: possible roles in periapical disease. Journal of Endodontics, 41, 841–845. .CrossrefGoogle Scholar

  • Mores, A. U., Souza, R. D., Cavalca, L., de Paula e Carvalho, A., Gursky, L. C., Rosa, R. T., Samaranayake, L. P., & Rosa, E. A. R. (2009). Enhancement of secretory aspartyl protease production in biofilms of Candida albicans exposed to sub-inhibitory concentrations of fluconazole. Mycoses, 54, 195– 201. .CrossrefGoogle Scholar

  • Mukherjee, P. K., Chandra, J., Kuhn, D. M., & Ghannoum, M. A. (2003). Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infection and Immunity, 71, 4333–4340. .CrossrefGoogle Scholar

  • Munro, C. A., Selvagglnl, S., de Bruljn, I., Walker, L., Lenardon, M. D., Gerssen, B., Milne, S., Brown, A. J. P., & Gow, N. A. (2007). The PKC, HOG and Ca2+ signalling pathways co-ordinately regulate chitin synthesis in Candida albicansMolecular Microbiology, 63, 1399–1413. .CrossrefGoogle Scholar

  • Naglik, J. R., Challacombe, S. J., & Hube, B. (2003). Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiology and Molecular Biology Reviews, 67, 400–428. .CrossrefGoogle Scholar

  • Naglik, J., Albrecht, A., Bader, O., & Hube, B. (2004). Candida albicans proteinases and host/pathogen interactions. Cellular Microbiology, 6, 915–926. .CrossrefGoogle Scholar

  • Naglik, J. R., Moyes, D., Makwana, J., Kanzaria, P., Tsich-laki, E., Weindl, G., Tappuni, A. R., Rodgers, C. A., Woodman, A. J., Challacombe, S. J., Schaller, M., & Hube, B. (2008). Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis. Microbiology, 154, 3266–3280. .CrossrefGoogle Scholar

  • Newport, G., & Agabian, N. (1997). KEX2 influences Candida albicans proteinase secretion and hyphal formation. Journal of Biological Chemistry, 272, 28954–28961. .CrossrefGoogle Scholar

  • Newport, G., Kuo, A., Flattery, A., Gill, C., Blake, J. J., Kurtz, M., Abruzzo, G. K., & Agabian, N. (2003). Inactivation of Kex2p diminishes the virulence of Candida albicansJournal of Biological Chemistry, 278, 1713–1720. .CrossrefGoogle Scholar

  • Paranjape, V., & Datta, A. (1991). Overexpression of the actin gene is associated with the morphogenesis of Candida albicansBiochemical and Biophysical Research Communications, 179, 423–427. .CrossrefGoogle Scholar

  • Pfaller, M. A., Bale, M., Buschelman, B., Lancaster, M., Espinel-Ingroff, A., Rex, J. H., & Rinaldi, M. G. (1994). Selection of candidate quality control isolates and tentative quality control ranges for in vitro susceptibility testing of yeast isolates by National Committee for Clinical Laboratory Standards Proposed Standard Methods. Journal of Clinical Microbiology, 32, 1650–1653.Google Scholar

  • Pfaller, M. A., & Diekema, D. J. (2007). Epidemiology of invasive candidiasis: a persistent public health problem. Clinical Microbiology Reviews, 20, 133–163. .CrossrefGoogle Scholar

  • Pfaller, M. A., Andes, D. R., Diekema, D. J., Horn, D. L., Reboli, A. C., Rotstein, C., Franks, B., & Azie, N. E. (2014). Epidemiology and outcomes of invasive candidiasis due to non-albicans species of Candida in 2,496 patients: data from the prospective antifungal therapy (PATH) registry 2004–2008. PLoS ONE, 9, e101510. .CrossrefGoogle Scholar

  • Phillips, A. J., Sudbery, I., & Ramsdale, M. (2003). Apopto-sis induced by environmental stresses and amphotericin B in Candida albicansProceedings of the National Academy of Sciences, 100, 14327–14332. .CrossrefGoogle Scholar

  • Pierce, C. G., & Lopez-Ribot, J. L. (2013). Candidiasis drug discovery and development: new approaches targeting virulence for discovering and identifying new drugs. Expert Opinion in Drug Discovery, 8, 1117–1126. .CrossrefGoogle Scholar

  • Ramage, G., Bachmann, S., Patterson, T. F., Wickes, B. L., & López-Ribot, J. L. (2002a). Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. Journal of Antimicrobial Chemotherapy, 49, 973–980. .CrossrefGoogle Scholar

  • Ramage, G., VandeWalle, K., López-Ribot, J. L., & Wickes, B. L. (2002b). The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicansFEMS Microbiology Letters, 214, 95–100. .CrossrefGoogle Scholar

  • Richardson, J. P., & Moyes, D. L. (2015). Adaptive immune responses to Candida albicans infection. Virulence, 6, 327– 337. .CrossrefGoogle Scholar

  • Samaranayake, Y. H., Cheung, B. P., Yau, J. Y., Yeung, S. K., & Samaranayake, L. P. (2013). Human serum promotes Candida albicans biofilm growth and virulence gene expression on silicone biomaterial. PLoS ONE, 8, e62902. .CrossrefGoogle Scholar

  • Schneider, S., & Morschhäuser, J. (2015). Induction of Candida albicans drug resistance genes by hybrid zinc cluster transcription factors. Antimicrobial Agents and Chemotherapy, 59, 558–569. .CrossrefGoogle Scholar

  • Sherry, L., Rajendran, R., Lappin, D. F., Borghi, E., Perdoni, F., Falleni, M., Tosi, D., Smith, K., Williams, C., Jones, B., Nile, C. J., & Ramage, G. (2014). Biofilms formed by Candida albicans bloodstream isolates display phenotypic and transcriptional heterogeneity that are associated with resistance and pathogenicity. BMC Microbiology, 14, 182. .CrossrefGoogle Scholar

  • Silva, N. C., Nery, J. M., & Dias, A. L. (2013). Aspartic pro-teinases of Candida spp.: role in pathogenicity and antifungal resistance. Mycoses, 57, 1–11. .CrossrefGoogle Scholar

  • Staib, P., Lermann, U., Blaß-Warmuth, J., Degel, B., Würzner, R., Monod, M., Schirmeister, T., & Morschhäuser, J. (2008). Tetracycline-inducible expression of individual secreted as-partic proteases in Candida albicans allows isoenzyme-specific inhibitor screening. Antimicrobial Agents and Chemotherapy, 52, 146–156. .CrossrefGoogle Scholar

  • Staniszewska, M., Bondaryk, M., & Ochal, Z. (2014a). Polish patent No. PL P.408765. Warsaw, Poland: Polish Patent Office.Google Scholar

  • Staniszewska, M., Bondaryk, M., Malewski, T., & Schaller, M. (2014b). The expression of the Candida albicans gene SAP4 during hyphal formation in human serum and in adhesion to monolayer cell culture of colorectal carcinoma Caco-2 (ATCC). Central European Journal of Biology, 9, 796–810. .CrossrefGoogle Scholar

  • Staniszewska, M., Bondaryk, M., & Ochal, Z. (2015a). Susceptibility of Candida albicans to new synthetic sulfone derivatives. Archiv der Pharmazie, 348, 132–143. .CrossrefGoogle Scholar

  • Staniszewska, M., Bondaryk, M., & Ochal, Z. (2015b). New synthetic sulfone derivatives inhibit growth, adhesion and the leucine arylamidase APE2 gene expression of Candida albicans in vitro. Bioorganic & Medicinal Chemistry, 23, 314– 321. .CrossrefGoogle Scholar

  • Teste, M. A., Duquenne, M., Fran¸cois, J. M., & Parrou, J. L. (2009). Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccha-romyces cerevisiaeBMC Molecular Biology, 10, 1–15. .CrossrefGoogle Scholar

  • Watts, H. J., Cheah, F. S. H., Hube, B., Sanglad, D., & Gow, N. A. R. (1998). Altered adherence in strains of Candida albicans harbouring null mutations in secreted aspartic proteinase genes. FEMS Microbiology Letters, 159, 129–135. .CrossrefGoogle Scholar

  • Wu, T., Wright, K., Hurst, S. F., & Morrison, C. J. (2000). Enhanced extracellular production of aspartyl proteinase, a virulence factor, by Candida albicans isolates following growth in subinhibitory concentrations of fluconazole. Antimicrobial Agents and Chemotherapy, 44, 1200–1208. .CrossrefGoogle Scholar

  • Zavrel, M., Majer, O., Kuchler, K., & Rupp, S. (2012). Transcription factor Efg1 shows a haploinsufficiency phenotype in modulating the cell wall architecture and immunogenicity of Candida albicansEukaryotic Cell, 11, 129–140. .CrossrefGoogle Scholar

About the article

Received: 2015-10-09

Revised: 2016-02-22

Accepted: 2016-02-25

Published Online: 2016-06-25

Published in Print: 2016-10-01

Citation Information: Chemical Papers, Volume 70, Issue 10, Pages 1336–1350, ISSN (Online) 1336-9075, ISSN (Print) 0366-6352, DOI: https://doi.org/10.1515/chempap-2016-0072.

Export Citation

© 2016 Institute of Chemistry, Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in