Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers

More options …
Volume 70, Issue 5


Preparation and characterisation of gelatine hydrogels predisposed to use as matrices for effective immobilisation of biocatalystst

Karolina Labus
  • Corresponding author
  • Division of Bioprocess and Biomedical Engineering, Faculty of Chemistry, Wroclaw University of Technology, Norwida 4/6, 50–373 Wroclaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aleksandra Drozd
  • Division of Bioprocess and Biomedical Engineering, Faculty of Chemistry, Wroclaw University of Technology, Norwida 4/6, 50–373 Wroclaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anna Trusek-Holownia
  • Division of Bioprocess and Biomedical Engineering, Faculty of Chemistry, Wroclaw University of Technology, Norwida 4/6, 50–373 Wroclaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-02-11 | DOI: https://doi.org/10.1515/chempap-2015-0235

Physical, enzymatic and chemical methods were used to develop an efficient procedure for preparing gelatine hydrogels of appropriate strength and elastic properties for applications as enzyme carriers. The concentrations of the crosslinking enzyme (transglutaminase), the initial amount of gelatine, the production time and the effect of additional crosslinking with glutaraldehyde were examined. As a result, the following conditions were selected: 0.1 g cm–3 solution of gelatine, 0.01 g cm–3 of transglutaminase (mTGase), a minimum of 2 h incubation at 4°C and an additional step of crosslinking with 1.0 vol. % of glutaraldehyde. Next, the absorption properties and storage stability of hydrogels so obtained were determined. From these results, it was observed that, with the exception of the physical gel, the remaining materials presented a relatively high resistance to hydrolytic degradation and retained their original spatial structure without any visible damages.

The immobilisation experiments indicated gelatine-based hydrogels crosslinked with transglutaminase as suitable for use as matrices for the entrapment of enzymes, which catalyse the conversion of low-molecular mass compounds. In addition to the potential for effective re-use in subsequent batch processes, the essential advantage of the immobilised β-galactosidase obtained in the current study is a marked reduction in its volume under storage conditions of long duration, without any significant decline in catalytic activity.

Keywords: gelatine; hydrogel; enzymatic crosslinking; absorption properties; enzyme immobilisation

Presented at the 42nd International Conference of the Slovak Society of Chemical Engineering, Tatranské Matliare, Slovakia, 25–29 May 2015.


  • Ahmed, E. M. (2015). Hydrogel: Preparation, characterization and applications: A review. Journal of Advanced Research, 6, 105–121. DOI: 10.1016/j.jare.2013.07.006.CrossrefGoogle Scholar

  • Babin, H., & Dickinson, E. (2001). Influence of transglutaminase treatment on the thermoreversible gelation of gelatin. Food Hydrocolloids, 15, 271–276. DOI: 10.1016/s0268-005x(01)00025-x.CrossrefGoogle Scholar

  • Bučko, M., Mislovičová, D., Nahálka, J., Vikartovská, A., Šefčovičová, J., Katrlík, J., Tkáč, J., Gemeiner, P., Lacík, I., Štefuca, V., Polakovič, M., Rosenberg, M., Rebroš, M., Šmogrovišová, D., & Švitel, J. (2012). Immobilization in biotechnology and biorecognition: From macro-to nanoscale systems. Chemical Papers, 66, 983–998. DOI: 10.2478/s11696-012-0226-3.CrossrefWeb of ScienceGoogle Scholar

  • Choi, J. M., Han, S. S., & Kim, H. S. (2015). Industrial applications of enzyme biocatalysis: Current status and future aspects. Biotechnology Advances. DOI: 10.1016/j.biotechadv.2015.02.014. (in press)Web of ScienceCrossrefGoogle Scholar

  • Datta, S., Christena, L. R., & Rajaram, Y. R. S. (2013). Enzyme immobilization: An overview on techniques and support materials. Biotech, 3, 1–9. DOI: 10.1007/s13205-012-0071-7.Web of ScienceCrossrefGoogle Scholar

  • Elleuche, S., Schröder, C., Sahm, K., & Antranikian, G. (2014). Extremozymes – biocatalysts with unique properties from extremophilic microorganisms. Current Opinion in Biotechnology, 29, 116–123. DOI: 10.1016/j.copbio.2014.04.003.CrossrefWeb of ScienceGoogle Scholar

  • Elnashar, M. M. M. (2010). Review Article: Immobilized molecules using biomaterials and nanobiotechnology. Journal of Biomaterials and Nanobiotechnology, 1, 61–77. DOI: 10.4236/jbnb.2010.11008.CrossrefGoogle Scholar

  • Fuchsbauer, H. L., Gerber, U., Engelmann, J., Seeger, T., Sinks, C., & Hecht, T. (1996). Influence of gelatin matrices cross-linked with transglutaminase on the properties of an enclosed bioactive material using β-galactosidase as model system. Biomaterials, 17, 1481–1488. DOI: 10.1016/0142-9612(96)89772-9.CrossrefGoogle Scholar

  • Gerrard, J. A. (2002). Protein–protein crosslinking in food: Methods, consequences, applications. Trends in Food Science & Technology, 13, 391–399. DOI: 10.1016/s0924-2244(02)00257-1.CrossrefGoogle Scholar

  • Ghan, Z. H., Zhang, T., Liu, Y. C., & Wu, D. C. (2012). Temperature-triggered enzyme immobilization and release based on cross-linked gelatin nanoparticles. PLoS ONE, 7, e47154. DOI: 10.1371/journal.pone.0047154.CrossrefGoogle Scholar

  • Griffin, M., Casadio, R., & Bergamini, C. M. (2002). Transglutaminases: Nature’s biological glues. Biochemical Journal, 368, 377–396. DOI: 10.1042/bj20021234.CrossrefGoogle Scholar

  • Haider, T., & Husain, Q. Y. (2008). Concanavalin A layered calcium alginate–starch beads immobilized β-galactosidase as a therapeutic agent for lactose intolerant patients. International Journal of Pharmaceutics, 359, 1–6. DOI: 10.1016/j.ijpharm.2008.03.013.CrossrefWeb of ScienceGoogle Scholar

  • Hoffman, A. S. (2002). Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 54, 3–12. DOI: 10.1016/s0169-409x(01)00239-3.CrossrefWeb of ScienceGoogle Scholar

  • Ito, A., Mase, A., Takizawa, Y., Shinkai, M., Honda, H., Hata, K. I., Ueda, M., & Kobayashi, T. (2003). Transglutaminase-mediated gelatin matrices incorporating cell adhesion factors as a biomaterial for tissue engineering. Journal of Bioscience and Bioengineering, 95, 196–199. DOI: 10.1016/s1389-1723(03)80129-9.CrossrefGoogle Scholar

  • Koetting, M. C., Peters, J. T., Steichen, S. D., & Peppas, N. A. (2015). Stimulus-responsive hydrogels: Theory, modern advances and applications. Materials Science and Engineering: R, 93, 1–49. DOI: 10.1016/j.mser.2015.04.001.CrossrefWeb of ScienceGoogle Scholar

  • Labus, K., Turek, A., Liesiene, J., & Bryjak, J. (2011). Efficient Agaricus bisporus tyrosinase immobilization on cellulose-based carriers. Biochemical Engineering Journal, 56, 232–240. DOI: 10.1016/j.bej.2011.07.003.Web of ScienceCrossrefGoogle Scholar

  • Labus, K., Szymańska, K., Bryjak, J., & Jarzębski, A. B. (2015). Immobilisation of tyrosinase on siliceous cellular foams affording highly effective and stable biocatalysts. Chemical Papers, 69, 1058–1066: DOI: 10.1515/chempap-2015-0115.CrossrefWeb of ScienceGoogle Scholar

  • Liu, L. S., Kost, J., Yan, F., & Spiro, R. C. (2012). Hydrogels from biopolymer hybrid for biomedical, food and functional food applications. Polymers, 4, 997–1011. DOI: 10.3390/polym4020997.Web of ScienceCrossrefGoogle Scholar

  • Mai, T. H. A., Tran, V. N., & Le, V. V. M. (2013). Biochemical studies on the immobilized lactase in the combined alginate–carboxymethyl cellulose gel. Biochemical Engineering Journal, 74, 81–87. DOI: 10.1016/j.bej.2013.03.003.Web of ScienceCrossrefGoogle Scholar

  • Moreira Teixeira, L. S., Feijen, J., van Blitterswijk, C. A., Dijkstra, P. J., & Karperien, M. (2012). Enzyme-catalyzed crosslinkable hydrogels: Emerging strategies for tissue engineering. Biomaterials, 33, 1281–1290. DOI: 10.1016/j.biomaterials.2011.10.067.Web of ScienceCrossrefGoogle Scholar

  • Nielsen, P. M. (1995). Reactions and potential industrial applications of transglutaminase: Review of literature and patents. Food Biotechnology, 9, 119–156. DOI: 10.1080/08905439509549889.CrossrefGoogle Scholar

  • Patel, A., & Mequanint, K. (2011). Hydrogel biomaterials. In R. Fazel-Rezai (Ed.), Biomedical engineering – frontiers and challenges (pp. 275–296). Rijeka, Croatia: InTech. DOI: 10.5772/24856.CrossrefGoogle Scholar

  • Ross-Murphy, S. B. (1992). Structure and rheology of gelatin gels: Recent progress. Polymer, 33, 2622–2627. DOI: 10.1016/0032-3861(92)91146-s.CrossrefGoogle Scholar

  • Ryšlavá, H., Doubnerová, V., Kavan, D., & Vaněk, O. (2013). Effect of posttranslational modifications on enzyme function and assembly. Journal of Proteomics, 92, 80–109. DOI: 10.1016/j.jprot.2013.03.025.Web of ScienceCrossrefGoogle Scholar

  • Shen, Q. Y., Yang, R. J., Hua, X., Ye, F. I., Zhang, W. B., & Zhao, W. (2011). Gelatin-templated biomimetic calcification for β-galactosidase immobilization. Process Biochemistry, 46, 1565–1571. DOI: 10.1016/j.procbio.2011.04.010.CrossrefWeb of ScienceGoogle Scholar

  • Song, Y. S., Lee, J. H., Kang, S. W., & Kim, S. W. (2010). Performance of β-galactosidase pretreated with lactose to prevent activity loss during the enzyme immobilisation process. Food Chemistry, 123, 1–5. DOI: 10.1016/j.foodchem.2010.04.043.CrossrefWeb of ScienceGoogle Scholar

  • Trevan, M. D. (1988). Enzyme immobilization by entrapment. In M. J. Walker (Ed.), New protein techniques, 3 (pp. 491–494). Clifton, NJ, USA: Humana Press. DOI: 10.1385/0.89603-126-8:491.CrossrefGoogle Scholar

  • Trusek-Holownia, A., & Noworyta, A. (2015). Efficient utilisation of hydrogel preparations with encapsulated enzymes – a case study on catalase and hydrogen peroxide degradation. Biotechnology Reports, 6, 13–19. DOI: 10.1016/j.btre.2014.12.012.CrossrefGoogle Scholar

  • Ward, A. G., & Courts, A. (1977). The science and technology of gelatin. New York, NY, USA: Academic Press.Google Scholar

  • Washizu, K., Ando, K., Koikeda, S., Hirose, S., Matsuura, A., Takagi, H., Motoki, M., & Takeuchi, K. (1994). Molecular cloning of the gene for microbial transglutaminase from Streptoverticillium and its expression in Streptomyces lividans. Bioscience, Biotechnology and Biochemistry, 58, 82–87. DOI: 10.1271/bbb.58.82.CrossrefGoogle Scholar

  • Wentworth, D. S., Skonberg, D., Donahue, D. W., & Ghanem, A. (2004). Application of chitosan-entrapped β-galactosidase in a packed-bed reactor system. Journal of Applied Polymer Science, 91, 1294–1299. DOI: 10.1002/app.13276.CrossrefGoogle Scholar

  • Zhang, S. T., Gao, S. F., & Gao, G. Q. (2010). Immobilization of β-galactosidase onto magnetic beads. Applied Biochemistry and Biotechnology, 160, 1386–1393. DOI: 10.1007/s12010-009-8600-5.CrossrefWeb of ScienceGoogle Scholar

  • Zhu, Y., Rinzema, A., Tramper, J., & Bol, J. (1995). Microbial transglutaminase – a review of its production and application in food processing. Applied Microbiology and Biotechnology, 44, 277–282. DOI: 10.1007/bf00169916.CrossrefGoogle Scholar

About the article

Received: 2015-06-16

Revised: 2015-10-02

Accepted: 2015-10-05

Published Online: 2016-02-11

Published in Print: 2016-05-01

Citation Information: Chemical Papers, Volume 70, Issue 5, Pages 523–530, ISSN (Online) 1336-9075, ISSN (Print) 0366-6352, DOI: https://doi.org/10.1515/chempap-2015-0235.

Export Citation

© 2015 Institute of Chemistry, Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in