Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers

Online
ISSN
1336-9075
See all formats and pricing
More options …
Volume 70, Issue 8

Issues

Simple and efficient treatment of high-strength industrial waste water using commercial zero-valent iron

Yolanda Segura / Fernando Martínez
  • School of Experimental Sciences and Technology, Rey Juan Carlos University, 28933, Madrid, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Juan Antonio Melero
  • School of Experimental Sciences and Technology, Rey Juan Carlos University, 28933, Madrid, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-03-31 | DOI: https://doi.org/10.1515/chempap-2016-0045

Abstract

The zero-valent iron (ZVI)/H2O2 Fenton system can be considered as an effective solution for the removal of many of the organic pollutants present in the waste waters generated by the drug manufacturing industry. The hydrogen peroxide concentration and dosage rate were studied in order to improve the efficiency of the oxidant in the TOC reduction and, thereby enhance the overall catalytic performance of the ZVI/H2O2 Fenton system. TOC reductions of up to 80 % and BOD5/COD ratios of up to 0.6 were achieved in the waste water as received without dilution (TOC0approximately 5gL−1) using hydrogen peroxide dose-staggering. This showed that the ZVI/H2O2 process led not only to a decrease in TOC removal but also to an increase in the biodegradability of the by-products formed. The hydrogen peroxide was consumed more efficiently and very low concentrations of iron dissolved (7 mg L−1) were obtained in the final effluents. The final values of COD, BOD5, the suspended solids’ content and the conductivity of the treated waste water met the limits of the Spanish legal industrial discharge, Decree 57/2005 (Ministry of Environment, Local Government and Planning, Community of Madrid, 2005). In addition, the composite thus formed, consisting of zero-valent iron and iron oxide-oxyhydroxides, can be readily removed from the treated effluent, avoiding any post-treatment step.

Keywords: industrial wastewater; Fenton processes; zero-valent iron (ZVI)

References

  • APHA, AWWA, WEF (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington, DC, USA: APHA.Google Scholar

  • Blanco, J., Torrades, F., De la Varga, M., & García-Montaño, J. (2012). Fenton and biological-Fenton coupled processes for textile wastewater treatment and reuse. Desalination, 286, 394–399. DOI: 10.1016/j.desal.2011.11.055.CrossrefGoogle Scholar

  • Chamarro, E., Marco, A., & Esplugas, S. (2001). Use of Fenton reagent to improve organic chemical biodegradability. Water Research, 35, 1047–1051. DOI: 10.1016/s0043-1354(00)00342-0.CrossrefGoogle Scholar

  • Chen, C. Y., Kuo, J. T., Yang, H. A., & Chung, Y. C. (2013). A coupled biological and photocatalysis pretreatment system for the removal of crystal violet from wastewater. Chemo-sphere, 92, 695–701. DOI: 10.1016/j.chemosphere.2013.04.040.CrossrefGoogle Scholar

  • Chen, R. Z., & Pignatello, J. J. (1997). Role of quinone intermediates as electron shuttles in Fenton and photoassisted Fenton oxidations of aromatic compounds. Environmental Science & Technology, 31, 2399–2406. DOI: 10.1021/es9610646.CrossrefGoogle Scholar

  • Deng, Y., & Englehardt, J. D. (2008). Hydrogen peroxide-enhanced iron-mediated aeration for the treatment of mature landfill leachate. Journal of Hazardous Materials, 153, 293–299. DOI: 10.1016/j.jhazmat.2007.08.049.CrossrefGoogle Scholar

  • EPA (1991). Guides to pollution prevention: The pharmaceutical industry (pp. 5–9). Cincinnati, OH, USA: US Environmental Protection Agency.Google Scholar

  • Farrè, M. J., Maldonado, M. I., Gernjak, W., Oller, I., Malato, S., Domènech, X., & Peral, J. (2008). Coupled solar photo-Fenton and biological treatment for the degradation of diuron and linuron herbicides at pilot scale. Chemosphere, 72, 622– 629. DOI: 10.1016/j.chemosphere.2008.02.043.CrossrefWeb of ScienceGoogle Scholar

  • Feitz, A. J., Joo, S. H., Guan, J., Sun, Q., Sedlak, D. L., & Waite, T. D. (2005). Oxidative transformation of contaminants using colloidal zero-valent iron. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 265, 88–94. DOI: 10.1016/j.colsurfa.2005.01.038.CrossrefGoogle Scholar

  • Ferrari, B., Paxéus, N., Lo Giudice, R., Pollio, A., & Garric, J. (2003). Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac. Ecotoxicology and Environmental Safety, 55, 359–370. DOI: 10.1016/s0147-6513(02)00082-9.CrossrefGoogle Scholar

  • Guisasola, A., Baeza, J. A., Carrera, J., Casas, C., & Lafuente, J. (2003). An off-line respirometric procedure to determine inhibition and toxicity of biodegradable compounds in biomass from an industrial WWTP. Water Science & Technology, 48, 267–275.Google Scholar

  • He, C., Yang, J. N., Zhu, L. F., Zhang, Q., Liao, W. C., Liu, S. K., Liao, Y., Asi, M. A., & Shu, D. (2013). pH-dependent degradation of acid orange II by zero-valent iron in presence of oxygen. Separation and Purification Technology, 117, 59– 68. DOI: 10.1016/j.seppur.2013.04.028.CrossrefGoogle Scholar

  • Joo, S. H., Feitz, A. J., & Waite, T. D. (2004). Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron. Environmental Science & Technology, 38, 2242–2247. DOI: 10.1021/es035157g.CrossrefGoogle Scholar

  • Joo, S. H., Feitz, A. J., Sedlak, D. L., & Waite, T. D. (2005). Quantification of the oxidizing capacity of nanoparticulate zero-valent iron. Environmental Science & Technology, 39, 1263–1268. DOI: 10.1021/es048983d.CrossrefGoogle Scholar

  • Kallel, M., Belaid, C., Mechichi, T., Ksibi, M., & Elleuch, B. (2009). Removal of organic load and phenolic compounds from olive mill wastewater by Fenton oxidation with zero-valent iron. Chemical Engineering Journal, 150, 391–395. DOI: 10.1016/j.cej.2009.01.017.CrossrefGoogle Scholar

  • Kilroy, A. C., & Gray, N. F. (1992). The toxicity of four organic solvents commonly used in the pharmaceutical industry to activated sludge. Water Research, 26, 887–892. DOI:10.1016/0043-1354(92)90193-8.CrossrefGoogle Scholar

  • Li, Y. C., Bachas, L. G., & Bhattacharyya, D. (2007). Selected chloro-organic detoxifications by polychelate (poly(acrylic acid)) and citrate-based Fenton reaction at neutral pH environment. Industrial & Engineering Chemistry Research, 46, 7984–7992. DOI: 10.1021/ie070393b.Web of ScienceCrossrefGoogle Scholar

  • Liu, H., Wang, Q., Wang, C., & Li, X. Z. (2013). Electron efficiency of zero-valent iron for groundwater remediation and wastewater treatment. Chemical Engineering Journal, 215– 216, 90–95. DOI: 10.1016/j.cej.2012.11.010.Web of ScienceCrossrefGoogle Scholar

  • Mazille, F., Schoettl, T., & Pulgarin, C. (2009). Synergistic effect of TiO2 and iron oxide supported on fluorocarbon films. Part 1: Effect of preparation parameters on photo-catalytic degradation of organic pollutant at neutral pH. Applied Catalysis B: Environmental, 89, 635–644. DOI: 10.1016/j.apcatb.2009.01.027.Web of ScienceGoogle Scholar

  • Ministry of Environment, Local Government and Planning, Community of Madrid (2005). Decreto 57/2005, de 30 de junio, por el que se revisan los Anexos de la Ley 10/1993, de 26 de octubre, sobre Vertidos Líquidos Industriales al Sistema Integral de Saneamiento. Boletín Oficial de la Comunidad de Madrid, 2005(159), 11–14. (in Spanish)Google Scholar

  • Neyens, E., & Baeyens, J. (2003). A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials, 98, 33–50. DOI: 10.1016/s0304-3894(02)00282-0.CrossrefGoogle Scholar

  • Parra, S., Henao, L., Mielczarski, E., Mielczarski, J., Albers, P., Suvorova, E., Guindet, J., & Kiwi, J. (2004). Synthesis, testing, and characterization of a novel Nafion membrane with superior performance in photoassisted immobilized Fenton catalysis. Langmuir, 20, 5621–5629. DOI: 10.1021/la049768d.CrossrefGoogle Scholar

  • Raj, D. S. S., & Anjaneyulu, Y. (2005). Evaluation of biokinetic parameters for pharmaceutical wastewaters using aerobic oxidation integrated with chemical treatment. Process Biochemistry, 40, 165–175. DOI: 10.1016/j.procbio.2003.11.056.CrossrefGoogle Scholar

  • Seif, H. A. A., Joshi, S. G., & Gupta, S. K. (1992). Effect of organic load and reactor height on the performance of anaerobic mesophilic and thermophilic fixed film reactors in the treatment of pharmaceutical wastewater. Environmental Technology, 13, 1161–1168. DOI: 10.1080/09593339209385 255.CrossrefGoogle Scholar

  • Segura, Y., Molina, R., Martínez, F., & Melero, J. A. (2009). Integrated heterogeneous sono–photo Fenton processes for the degradation of phenolic aqueous solutions. Ultrasonics Sono-chemistry, 16, 417–424. DOI: 10.1016/j.ultsonch.2008.10.004.CrossrefGoogle Scholar

  • Segura, Y., Martínez, F., & Melero, J. A. (2013). Effective pharmaceutical wastewater degradation by Fenton oxidation with zero-valent iron. Applied Catalysis B: Environmental, 136– 137, 64–69. DOI: 10.1016/j.apcatb.2013.01.036.CrossrefWeb of ScienceGoogle Scholar

  • Segura, Y., Martínez, F., Melero, J. A., & Fierro, J. L. G. (2015). Zero valent iron (ZVI) mediated Fenton degradation of industrial wastewater: Treatment performance and characterization of final composites. Chemical Engineering Journal, 269, 298–305. DOI: 10.1016/j.cej.2015.01.102.CrossrefGoogle Scholar

  • Shimizu, A., Tokumura, M., Nakajima, K., & Kawase, Y. (2012). Phenol removal using zero-valent iron powder in the presence of dissolved oxygen: Roles of decomposition by the Fenton reaction and adsorption/precipitation. Journal of Hazardous Materials, 201–202, 60–67. DOI: 10.1016/j.jhazmat.2011.11.009.CrossrefWeb of ScienceGoogle Scholar

  • Soon, A. N., & Hameed, B. H. (2011). Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process. Desalination, 269, 1–16. DOI: 10.1016/j.desal.2010.11.002.Web of ScienceCrossrefGoogle Scholar

  • Xu, H. Y., Prasad, M., & Liu, Y. (2009). Schorl: A novel catalyst in mineral-catalyzed Fenton-like system for dyeing wastewater discoloration. Journal of Hazardous Materials, 165, 1186– 1192. DOI: 10.1016/j.jhazmat.2008.10.108.Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2015-09-04

Revised: 2016-01-11

Accepted: 2016-01-12

Published Online: 2016-03-31

Published in Print: 2016-08-01


Citation Information: Chemical Papers, Volume 70, Issue 8, Pages 1059–1065, ISSN (Online) 1336-9075, ISSN (Print) 0366-6352, DOI: https://doi.org/10.1515/chempap-2016-0045.

Export Citation

© 2016 Institute of Chemistry, Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in