Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Chemical Papers

More options …
Volume 70, Issue 9


Synthesis, structural and spectroscopic properties of asymmetric schiff bases derived from 2,3-diaminopyridine

Agnieszka Pazik
  • Corresponding author
  • Department of Chemistry and Technology of Functional Materials, Narutowicza Street 11/12, 80-233 Gdansk, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Beata Kamińska
  • Department of Chemistry and Technology of Functional Materials, Narutowicza Street 11/12, 80-233 Gdansk, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anna Skwierawska
  • Department of Chemistry and Technology of Functional Materials, Narutowicza Street 11/12, 80-233 Gdansk, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Łukasz Ponikiewski
  • Department of Inorganic Chemistry, Gdansk University of Technology, Narutowicza Street 11/12, 80-233 Gdansk, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-05-24 | DOI: https://doi.org/10.1515/chempap-2016-0058


Two Schiff base derivatives, 4-(2-amino-3-pyridyliminomethyl)phenol (I) and 3-(2-amino-3- pyridyliminomethyl)nitrobenzene (II ), were synthesised and characterised by spectroscopy. The structure of I was determined by single crystal X-ray diffraction studies. The asymmetric Schiff base derived from 2,3-diaminopyridine selectively recognise transition and heavy metal cations, and some anion. Ligands I and II form stable complexes with Cu2+, Zn2+, Pb2+, Al3+ whereas ligand I also binds F ions. The stoichiometry for the host : cation is 1 : 1 and 2 : 1. The addition of F ion in CH3CN to ligand I causes a colour change of the solution from colourless to yellow. The binding behaviour of ligand I towards several ions was investigated using density functional theory calculations.

Key words: asymmetric Schiff bases; X-ray crystal structure; cation complexation; fluoride; UVVISspectroscopy; 1H NMR spectroscopy


  • Abdel-Rahman, L. H., El-Khatib, R. M., Nassr, L. A. E., Abu- Dief, A. M., & El-Din Lashin, F. (2013). Design, characterization, teratogenicity testing, antibacterial, antifungal and DNA interaction of few high spin Fe(II) Schiff base amino acid complexes. Spectrochimica Acta Part A, 111, 266–276. DOI: 10.1016/j.saa.2013.03.061.Web of ScienceCrossrefGoogle Scholar

  • Afkhami, A., Bagheri, H., Khoshsafar, H., Saber-Tehrani, M., Tabatabaee, M., & Shirzadmehr, A. (2012). Simultaneous trace-levels determination of Hg(II) and Pb(II) ions in various samples using a modified carbon paste electrode based on multi-walled carbon nanotubes and a new synthesized Schiff base. Analytica Chimica Acta, 746, 98–106. DOI: 10.1016/j.aca.2012.08.024.CrossrefGoogle Scholar

  • Amin, R. M., Abdel-Kader, N. S., & El-Ansary, A. L. (2012). Microplate assay for screening the antibacterial activity of Schiff bases derived from substituted benzopyran- 4-one. Spectrochimica Acta Part A, 95, 517–525. DOI: 10.1016/j.saa.2012.04.042.Web of ScienceCrossrefGoogle Scholar

  • Azadbakht, R., Almasi, T., Keypour, H., & Rezaeivala, H. (2013). A new asymmetric Schiff base system as fluorescent chemosensor for Al3+ ion. Inorganic Chemistry Communications, 33, 63–67. DOI: 10.1016/j.inoche.2013.03.014.CrossrefGoogle Scholar

  • Aziz, A. A. A. (2013). A novel highly sensitive and selective optical sensor based on a symmetric tetradentate Schiff-base embedded in PVC polymeric film for determination of Zn2+ ion in real samples. Journal of Luminescence, 143, 663–669. DOI: 10.1016/j.jlumin.2013.06.020.Web of ScienceCrossrefGoogle Scholar

  • Carreño, A., Gacitua, M., Schott, E., Zarate, X., Manriquez, J. M., Preite, M., Ladeira S., Castel, A., Pizarro, N., Vega, A., Chavez, I., & Arratia-Perez, R. (2015). Experimental and theoretical studies of the ancillary ligand (E)-2-((3- amino-pyridin-4-ylimino)-methyl)-4,6-di-tert-butylphenol in the rhenium(I) core. New Journal of Chemistry, 39, 5725– 5734. DOI: 10.1039/c5nj00772k.CrossrefGoogle Scholar

  • Cimerman, Z., Galešić, N., & Bosner, B. (1992). Structure and spectroscopic characteristics of Schiff bases of salicylaldehyde with 2,3-diaminopyridine. Journal of Molecular Structure, 274, 131–144. DOI: 10.1016/0022-2860(92)80152-8.CrossrefGoogle Scholar

  • Cimerman, Z., Galic, N., & Bosner, B. (1997). The Schiff bases of salicylaldehyde and aminopyridines as highly sensitive analytical reagents. Analytica Chimica Acta, 343, 145–153. DOI: 10.1016/s0003-2670(96)00587-9.CrossrefGoogle Scholar

  • Dai, C. H., & Mao, F. L. (2013). Structure of a new Schiff base cobalt(III) complex with antibacterial activity. Journal of Structural Chemistry, 54, 624–629. DOI: 10.1134/s0022476613030244.CrossrefGoogle Scholar

  • Devaraj, S., Tsui, Y. K., Chiang, C. Y., & Yen, Y. P. (2012). A new dual functional sensor: Highly selective colorimetric chemosensor for Fe3+ and fluorescent sensor for Mg2+. Spectrochimica Acta Part A, 96, 594–599. DOI: 10.1016/j.saa.2012.07.032.CrossrefGoogle Scholar

  • Dubey, P. K., & Ratnam, C. V. (1977). Formation of heterocyclic rings containing nitrogen: Part XXVI – Condensation of pyridine 2,3-diamine with aromatic aldehydes. Proceedings of the Indian Academy of Sciences – Section A, 85, 204–209. DOI: 10.1007/bf03049482.CrossrefGoogle Scholar

  • Erdemir, S., Kocyigit, O., Alici, O., & Malkondu, S. (2013). ‘Naked-eye’ detection of F ions by two novel colorimetric receptors. Tetrahedron Letters, 54, 613–617. DOI: 10.1016/j.tetlet.2012.11.138.CrossrefWeb of ScienceGoogle Scholar

  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Jr., Vrenen, T., Kudin, K. N., Burant, J. C., Illa, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennuci, B., Cossi, M., Scalmani, G. Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, K. R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, V. C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Ausin, A. J., Cammi, R., Pomelli, C., Ochterski, J., Ayala, P. Y., Morokuma, K., Voth, G. A., Salavador, P., Dannenberg, J. J., Zakrzewski, V. G., Dopprich, S., Daniels, A. D., Strain. M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavashari, K., Foresman, J. B., Orlitz, J. V., Cui, Q., Baboul, A., Cliffors, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromo, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanyakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, J. L. Gonzalez, C., & Pople, J. (2004). Gaussian 03, Revision 03 [computer software]. Wallingford, CT, USA: Gaussian Inc.Google Scholar

  • Grivani, G., & Akherati, A. (2013). Polymer-supported bis (2- hydroxyanyl) acetylacetonato molybdenyl Schiff base catalyst as effective, selective and highly reusable catalyst in epoxidation of alkenes. Inorganic Chemistry Communications, 28, 90–93. DOI: 10.1016/j.inoche.2012.11.015.CrossrefWeb of ScienceGoogle Scholar

  • Gupta, V. K., Singh, A. K., Ganjali, M. R., Norouzi, P., Faridbod, F., & Mergu, N. (2013). Comparative study of colorimetric sensors based on newly synthesized Schiff bases. Sensors and Actuators B, 182, 642–651. DOI: 10.1016/j.snb.2013.03.062.CrossrefWeb of ScienceGoogle Scholar

  • Heo, Y., Kang, Y. Y., Palani, T., Lee, J., & Lee, S. (2012). Synthesis, characterization of palladium hydroxysalen complex and its application in the coupling reaction of arylboronic acids: Mizoroki–Heck type reaction and decarboxylative couplings. Inorganic Chemistry Communications, 23, 1–5. DOI: 10.1016/j.inoche.2012.05.013.Web of ScienceCrossrefGoogle Scholar

  • Huang, C. Y., Wan, C. F., Chir, J. L., & Wu, A. T. (2013). A Schiff-based colorimetric fluorescent sensor with potential for detection of fluoride ions. Journal of Fluorescence, 23, 1107–1111. DOI: 10.1007/s10895-013-1257-z.CrossrefGoogle Scholar

  • Jarvo, E. R., Lawrence, B. M., & Jacobsen, E. N. (2005). Highly enantio- and regioselective quinone Diels–Alder reactions catalyzed by a tridentate [(Schiff base)CrIII] complex. Angewandte Chemie International Edition, 44, 6043–6046. DOI: 10.1002/anie.200502176.CrossrefGoogle Scholar

  • Jeong, T., Lee, H. K., Jeong, D. C., & Jeon, S. (2005). A lead(II)-selective PVC membrane based on a Schiff base complex of N,N_-bis(salicylidene)-2,6-pyridinediamine. Talanta, 65, 543–548. DOI: 10.1016/j.talanta.2004.07.016.CrossrefGoogle Scholar

  • Jeewoth, T., Bhowon, M. G., & Wah, H. L. K. (1999). Synthesis, characterization and antibacterial properties of Schiff bases and Schiff base metal complexes derived from 2,3- diamino-pyridine. Transition Metal Chemistry, 24, 445–448. DOI: 10.1023/a:1006917704209.CrossrefGoogle Scholar

  • Ji, C., Day, S. E., & Silvers, W. C. (2008). Catalytic reduction of 1- and 2-bromooctanes by a dinickel(I) Schiff base complex containing two salen units electrogenerated at carbon cathodes in dimethylformamide. Journal of Electroanalytical Chemistry, 622, 15–21. DOI: 10.1016/j.jelechem.2008.04.023.CrossrefWeb of ScienceGoogle Scholar

  • Jiménez-Sánchez, A., Farfán, N., & Santillan, R. (2013). A reversible fluorescent–colorimetric Schiff base sensor for Hg2+ ion. Tetrahedron Letters, 54, 5279–5283. DOI: 10.1016/j.tetlet.2013.07.072.Web of ScienceCrossrefGoogle Scholar

  • Kleij, A. W., Tooke, D. M., Spek, A. L., & Reek, J. N. H. (2005). A convenient synthetic route for the preparation of nonsymmetric metallo–salphen complexes. European Journal of Inorganic Chemistry, 22, 4626–4632. DOI: 10.1002/ejic.200500628.CrossrefGoogle Scholar

  • Kumar, K. S., Ganguly, S., Veerasamy, R., & De Clercq, E. (2010). Synthesis, antiviral activity and cytotoxicity evaluation of Schiff bases of some 2-phenyl quinazoline-4(3)H-ones. European Journal of Medicinal Chemistry, 45, 5474–5479. DOI: 10.1016/j.ejmech.2010.07.058.CrossrefGoogle Scholar

  • Kumar, M. S., Kumar, S. L. A., & Sreekanth, A. (2013). An efficient triazole-based fluorescent “turn-on” receptor for nakedeye recognition of F and AcO: UV-visible, fluorescence and 1H NMR studies. Materials Science and Engineering: C, 33, 3346–3352. DOI: 10.1016/j.msec.2013.04.018.CrossrefWeb of ScienceGoogle Scholar

  • Lin, C. Y., Huang, K. F., & Yen, Y. P. (2013). A new selective colorimetric and fluorescent chemodosimeter for HSO4 based on hydrolysis of Schiff base. Spectrochimica Acta Part A, 115, 552–558. DOI: 10.1016/j.saa.2013.06.083.Web of ScienceGoogle Scholar

  • Liu, G., & Shao, J. (2013). Ratiometric fluorescence and colorimetric sensing of anion utilizing simple Schiff base derivatives. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 76, 99–105. DOI: 10.1007/s10847-012-0177-x.CrossrefWeb of ScienceGoogle Scholar

  • Ourari, A., Khelafi, M., Aggoun, D., Jutand, A., & Amatore, C. (2012). Electrocatalytic oxidation of organic substrates with molecular oxygen using tetradentate ruthenium(III)– Schiff base complexes as catalysts. Electrochimica Acta, 75, 366–370. DOI: 10.1016/j.electacta.2012.05.021.Web of ScienceCrossrefGoogle Scholar

  • Qiao, X., Ma, Z. Y., Xie, C. Z., Xue, F., Zhang, Y. W., Xu, J. Y., Qiang, Z. Y., Lou, J. S., Chen, G. J., & Yan, S. P. (2011). Study on potential antitumor mechanism of a novel Schiff base copper(II) complex: Synthesis, crystal structure, DNA binding, cytotoxicity and apoptosis induction activity. Journal of Inorganic Biochemistry, 105, 728–737. DOI: 10.1016/j.jinorgbio.2011.01.004.CrossrefGoogle Scholar

  • Reena, V., Suganya, S., & Velmathi, S. (2013). Synthesis and anion binding studies of azo-Schiff bases: Selective colorimetric fluoride and acetate ion sensors. Journal of Fluorine Chemistry, 153, 89–95. DOI: 10.1016/j.jfluchem.2013.05.010.CrossrefWeb of ScienceGoogle Scholar

  • Şahin, Z. M., Doğancı, E., Yıldız, S. Z., Tuna, M., Yılmaz, F., Yerli, Y., & Görür, M. (2010). Synthesis and characterization of two-armed poly(-caprolactone) polymers initiated by Schiff’s base complexes of copper(II) and nickel(II). Synthetic Metals, 160, 1973–1980. DOI: 10.1016/j.synthmet.2010.07.018.Web of ScienceCrossrefGoogle Scholar

  • Schiff, H. (1866). Eine neue Reihe organischer Diamine. Annalen der Chemie und Pharmacie, 140, 92–137. DOI: 10.1002/jlac.18661400106. (in German)CrossrefGoogle Scholar

  • Schilf, W., Kamieński, B., Rozwadowski, Z., Ambroziak, K., Bieg, B., & Dziembowska, T. (2004). Solid state 15N and 13C NMR study of dioxomolybdenum(VI) complexes of Schiff bases derived from trans-1,2-cyclohexanediamine. Journal of Molecular Structure, 700, 61–65. DOI: 10.1016/j.molstruc.2003.11.055.CrossrefGoogle Scholar

  • Sen, S., Mukherjee, M., Chakrabarty, K., Hauli, I., Mukhopadhyay, S. K., & Chattopadhyay, P. (2013). Cell permeable fluorescent receptor for detection of H2PO4 in aqueous solvent. Organic & Biomolecular Chemistry, 11, 1537–1544. DOI: 10.1039/c2ob27201f.CrossrefWeb of ScienceGoogle Scholar

  • Sheldrick, G. M. (2008). A short history of SHELX. Acta Crystallographica Section A, 64, 112–122. DOI: 10.1107/s01087.7307043930.Web of ScienceCrossrefGoogle Scholar

  • Udhayakumari, D., Saravanamoorthy, S., & Velmathi, S. (2012). Colorimetric and fluorescent sensing of transition metal ions in aqueous medium by salicylaldimine based chemosensor. Materials Science and Engineering: C, 32, 1878–1882. DOI: 10.1016/j.msec.2012.05.005.CrossrefWeb of ScienceGoogle Scholar

  • Waldeck, D. H. (1991). Photoisomerization dynamics of stilbenes. Chemical Reviews, 91, 415–436. DOI: 10.1021/cr000.3a007.CrossrefGoogle Scholar

  • Yang, Y. X., Xue, H.M., Chen, L. C., Sheng, R. L., Li, X. Q., & Li, K. (2013). Colorimetric and highly selective fluorescence ”turn-on” detection of Cr3+ by using a simple Schiff base sensor. Chinese Journal of Chemistry, 31, 377–380. DOI: 10.1002/cjoc.201200852.Web of ScienceCrossrefGoogle Scholar

  • Yao, L. H., Wang, L., Zhang, J. F., Tang, N., & Wu, J. C. (2012). Ring opening polymerization of L-lactide by an electron-rich Schiff base zinc complex: An activity and kinetic study. Journal of Molecular Catalysis A, 352, 57–62. DOI: 10.1016/j.molcata.2011.10.012.CrossrefGoogle Scholar

  • Yıldız, M., Ünver, H., Erdener, D., Kiraz, A., & İskeleli, N. O. (2009). Synthesis, spectroscopic studies and crystal structure of (E)-2-(2,4-dihydroxybenzylidene)thiosemicarbazone and (E)-2-[(1H-indol-3-yl)methylene]thiosemicarbazone. Journal of Molecular Structure, 919, 227–234. DOI: 10.1016/j.molstruc.2008.09.008.CrossrefGoogle Scholar

  • Yuan, X. J., Wang, R. Y., Mao, C. B., Wu, L., Chu, C. Q., Yao, R., Gao, Z. Y., Wu, B. L., & Zhang, H. Y. (2012). New Pb(II)-selective membrane electrode based on a new Schiff base complex. Inorganic Chemistry Communications, 15, 29–32. DOI: 10.1016/j.inoche.2011.09.031.CrossrefWeb of ScienceGoogle Scholar

  • Zhang, L., Ni, X. F., Sun, W. L., & Shen, Z. Q. (2008). Polymerization of isoprene catalyzed by neodymium heterocyclic Schiff base complex. Chinese Chemical Letters, 19, 734–738. DOI: 10.1016/j.cclet.2008.03.007.CrossrefWeb of ScienceGoogle Scholar

  • Zhou, G. P., Hui, Y. H., Wan, N. N., Liu, Q. J., Xie, Z. F., & Wang, J. D. (2012a). Mn(OAc)2/Schiff base as a new efficient catalyst system for the Henry reaction of nitroalkanes with aldehydes. Chinese Chemical Letters, 23, 690–694. DOI: 10.1016/j.cclet.2012.04.018.CrossrefWeb of ScienceGoogle Scholar

  • Zhou, Y. M., Zhou, H., Zhang, J. L., Zhang, L., & Niu, J. Y. (2012b). Fe3+-selective fluorescent probe based on aminoantipyrine in aqueous solution. Spectrochimica Acta Part A, 98, 14–17. DOI: 10.1016/j.saa.2012.08.025.CrossrefGoogle Scholar

About the article

Received: 2015-10-26

Revised: 2016-01-21

Accepted: 2016-02-04

Published Online: 2016-05-24

Published in Print: 2016-09-01

Citation Information: Chemical Papers, Volume 70, Issue 9, Pages 1204–1217, ISSN (Online) 1336-9075, ISSN (Print) 0366-6352, DOI: https://doi.org/10.1515/chempap-2016-0058.

Export Citation

© 2016 Institute of Chemistry, Slovak Academy of Sciences.Get Permission

Comments (0)

Please log in or register to comment.
Log in