Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 24, 2016

Synthesis, structural and spectroscopic properties of asymmetric schiff bases derived from 2,3-diaminopyridine

  • Agnieszka Pazik EMAIL logo , Beata Kamińska , Anna Skwierawska and Łukasz Ponikiewski
From the journal Chemical Papers

Abstract

Two Schiff base derivatives, 4-(2-amino-3-pyridyliminomethyl)phenol (I) and 3-(2-amino-3- pyridyliminomethyl)nitrobenzene (II ), were synthesised and characterised by spectroscopy. The structure of I was determined by single crystal X-ray diffraction studies. The asymmetric Schiff base derived from 2,3-diaminopyridine selectively recognise transition and heavy metal cations, and some anion. Ligands I and II form stable complexes with Cu2+, Zn2+, Pb2+, Al3+ whereas ligand I also binds F ions. The stoichiometry for the host : cation is 1 : 1 and 2 : 1. The addition of F ion in CH3CN to ligand I causes a colour change of the solution from colourless to yellow. The binding behaviour of ligand I towards several ions was investigated using density functional theory calculations.

Acknowledgements

The financial support for this work received from Gdansk University of Technology, grant no. BW 020331/006 DS 020223/003 is gratefully acknowledged.The authors wish to thank Professor J. Biernat for the invaluable assistance in the implementation of research and preparation of the manuscript.

Supplementary data

Complete crystallographic data for the structure reported in this paper were deposited with the Cambridge Crystallographic Data Centre as Supplementary Publication No CCDC 988906. Copies of the data can be obtained free of charge from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (tel.: +44-1223-336-408; fax: +44-1223-336-033, e-mail: deposit@ ccdc.cam.ac.uk).

References

Abdel-Rahman, L. H., El-Khatib, R. M., Nassr, L. A. E., Abu- Dief, A. M., & El-Din Lashin, F. (2013). Design, characterization, teratogenicity testing, antibacterial, antifungal and DNA interaction of few high spin Fe(II) Schiff base amino acid complexes. Spectrochimica Acta Part A, 111, 266–276. DOI: 10.1016/j.saa.2013.03.061.10.1016/j.saa.2013.03.061Search in Google Scholar

Afkhami, A., Bagheri, H., Khoshsafar, H., Saber-Tehrani, M., Tabatabaee, M., & Shirzadmehr, A. (2012). Simultaneous trace-levels determination of Hg(II) and Pb(II) ions in various samples using a modified carbon paste electrode based on multi-walled carbon nanotubes and a new synthesized Schiff base. Analytica Chimica Acta, 746, 98–106. DOI: 10.1016/j.aca.2012.08.024.10.1016/j.aca.2012.08.024Search in Google Scholar

Amin, R. M., Abdel-Kader, N. S., & El-Ansary, A. L. (2012). Microplate assay for screening the antibacterial activity of Schiff bases derived from substituted benzopyran- 4-one. Spectrochimica Acta Part A, 95, 517–525. DOI: 10.1016/j.saa.2012.04.042.10.1016/j.saa.2012.04.042Search in Google Scholar

Azadbakht, R., Almasi, T., Keypour, H., & Rezaeivala, H. (2013). A new asymmetric Schiff base system as fluorescent chemosensor for Al3+ ion. Inorganic Chemistry Communications, 33, 63–67. DOI: 10.1016/j.inoche.2013.03.014.10.1016/j.inoche.2013.03.014Search in Google Scholar

Aziz, A. A. A. (2013). A novel highly sensitive and selective optical sensor based on a symmetric tetradentate Schiff-base embedded in PVC polymeric film for determination of Zn2+ ion in real samples. Journal of Luminescence, 143, 663–669. DOI: 10.1016/j.jlumin.2013.06.020.10.1016/j.jlumin.2013.06.020Search in Google Scholar

Carreño, A., Gacitua, M., Schott, E., Zarate, X., Manriquez, J. M., Preite, M., Ladeira S., Castel, A., Pizarro, N., Vega, A., Chavez, I., & Arratia-Perez, R. (2015). Experimental and theoretical studies of the ancillary ligand (E)-2-((3- amino-pyridin-4-ylimino)-methyl)-4,6-di-tert-butylphenol in the rhenium(I) core. New Journal of Chemistry, 39, 5725– 5734. DOI: 10.1039/c5nj00772k.10.1039/c5nj00772kSearch in Google Scholar

Cimerman, Z., Galešić, N., & Bosner, B. (1992). Structure and spectroscopic characteristics of Schiff bases of salicylaldehyde with 2,3-diaminopyridine. Journal of Molecular Structure, 274, 131–144. DOI: 10.1016/0022-2860(92)80152-8.10.1016/0022-2860(92)80152-8Search in Google Scholar

Cimerman, Z., Galic, N., & Bosner, B. (1997). The Schiff bases of salicylaldehyde and aminopyridines as highly sensitive analytical reagents. Analytica Chimica Acta, 343, 145–153. DOI: 10.1016/s0003-2670(96)00587-9.10.1016/s0003-2670(96)00587-9Search in Google Scholar

Dai, C. H., & Mao, F. L. (2013). Structure of a new Schiff base cobalt(III) complex with antibacterial activity. Journal of Structural Chemistry, 54, 624–629. DOI: 10.1134/s0022476613030244.10.1134/s0022476613030244Search in Google Scholar

Devaraj, S., Tsui, Y. K., Chiang, C. Y., & Yen, Y. P. (2012). A new dual functional sensor: Highly selective colorimetric chemosensor for Fe3+ and fluorescent sensor for Mg2+. Spectrochimica Acta Part A, 96, 594–599. DOI: 10.1016/j.saa.2012.07.032.10.1016/j.saa.2012.07.032Search in Google Scholar PubMed

Dubey, P. K., & Ratnam, C. V. (1977). Formation of heterocyclic rings containing nitrogen: Part XXVI – Condensation of pyridine 2,3-diamine with aromatic aldehydes. Proceedings of the Indian Academy of Sciences – Section A, 85, 204–209. DOI: 10.1007/bf03049482.10.1007/bf03049482Search in Google Scholar

Erdemir, S., Kocyigit, O., Alici, O., & Malkondu, S. (2013). ‘Naked-eye’ detection of F ions by two novel colorimetric receptors. Tetrahedron Letters, 54, 613–617. DOI: 10.1016/j.tetlet.2012.11.138.10.1016/j.tetlet.2012.11.138Search in Google Scholar

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Jr., Vrenen, T., Kudin, K. N., Burant, J. C., Illa, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennuci, B., Cossi, M., Scalmani, G. Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, K. R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, V. C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Ausin, A. J., Cammi, R., Pomelli, C., Ochterski, J., Ayala, P. Y., Morokuma, K., Voth, G. A., Salavador, P., Dannenberg, J. J., Zakrzewski, V. G., Dopprich, S., Daniels, A. D., Strain. M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavashari, K., Foresman, J. B., Orlitz, J. V., Cui, Q., Baboul, A., Cliffors, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromo, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanyakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, J. L. Gonzalez, C., & Pople, J. (2004). Gaussian 03, Revision 03 [computer software]. Wallingford, CT, USA: Gaussian Inc.Search in Google Scholar

Grivani, G., & Akherati, A. (2013). Polymer-supported bis (2- hydroxyanyl) acetylacetonato molybdenyl Schiff base catalyst as effective, selective and highly reusable catalyst in epoxidation of alkenes. Inorganic Chemistry Communications, 28, 90–93. DOI: 10.1016/j.inoche.2012.11.015.10.1016/j.inoche.2012.11.015Search in Google Scholar

Gupta, V. K., Singh, A. K., Ganjali, M. R., Norouzi, P., Faridbod, F., & Mergu, N. (2013). Comparative study of colorimetric sensors based on newly synthesized Schiff bases. Sensors and Actuators B, 182, 642–651. DOI: 10.1016/j.snb.2013.03.062.10.1016/j.snb.2013.03.062Search in Google Scholar

Heo, Y., Kang, Y. Y., Palani, T., Lee, J., & Lee, S. (2012). Synthesis, characterization of palladium hydroxysalen complex and its application in the coupling reaction of arylboronic acids: Mizoroki–Heck type reaction and decarboxylative couplings. Inorganic Chemistry Communications, 23, 1–5. DOI: 10.1016/j.inoche.2012.05.013.10.1016/j.inoche.2012.05.013Search in Google Scholar

Huang, C. Y., Wan, C. F., Chir, J. L., & Wu, A. T. (2013). A Schiff-based colorimetric fluorescent sensor with potential for detection of fluoride ions. Journal of Fluorescence, 23, 1107–1111. DOI: 10.1007/s10895-013-1257-z.10.1007/s10895-013-1257-zSearch in Google Scholar PubMed

Jarvo, E. R., Lawrence, B. M., & Jacobsen, E. N. (2005). Highly enantio- and regioselective quinone Diels–Alder reactions catalyzed by a tridentate [(Schiff base)CrIII] complex. Angewandte Chemie International Edition, 44, 6043–6046. DOI: 10.1002/anie.200502176.10.1002/anie.200502176Search in Google Scholar PubMed

Jeong, T., Lee, H. K., Jeong, D. C., & Jeon, S. (2005). A lead(II)-selective PVC membrane based on a Schiff base complex of N,N_-bis(salicylidene)-2,6-pyridinediamine. Talanta, 65, 543–548. DOI: 10.1016/j.talanta.2004.07.016.10.1016/j.talanta.2004.07.016Search in Google Scholar PubMed

Jeewoth, T., Bhowon, M. G., & Wah, H. L. K. (1999). Synthesis, characterization and antibacterial properties of Schiff bases and Schiff base metal complexes derived from 2,3- diamino-pyridine. Transition Metal Chemistry, 24, 445–448. DOI: 10.1023/a:1006917704209.10.1023/a:1006917704209Search in Google Scholar

Ji, C., Day, S. E., & Silvers, W. C. (2008). Catalytic reduction of 1- and 2-bromooctanes by a dinickel(I) Schiff base complex containing two salen units electrogenerated at carbon cathodes in dimethylformamide. Journal of Electroanalytical Chemistry, 622, 15–21. DOI: 10.1016/j.jelechem.2008.04.023.10.1016/j.jelechem.2008.04.023Search in Google Scholar

Jiménez-Sánchez, A., Farfán, N., & Santillan, R. (2013). A reversible fluorescent–colorimetric Schiff base sensor for Hg2+ ion. Tetrahedron Letters, 54, 5279–5283. DOI: 10.1016/j.tetlet.2013.07.072.10.1016/j.tetlet.2013.07.072Search in Google Scholar

Kleij, A. W., Tooke, D. M., Spek, A. L., & Reek, J. N. H. (2005). A convenient synthetic route for the preparation of nonsymmetric metallo–salphen complexes. European Journal of Inorganic Chemistry, 22, 4626–4632. DOI: 10.1002/ejic.200500628.10.1002/ejic.200500628Search in Google Scholar

Kumar, K. S., Ganguly, S., Veerasamy, R., & De Clercq, E. (2010). Synthesis, antiviral activity and cytotoxicity evaluation of Schiff bases of some 2-phenyl quinazoline-4(3)H-ones. European Journal of Medicinal Chemistry, 45, 5474–5479. DOI: 10.1016/j.ejmech.2010.07.058.10.1016/j.ejmech.2010.07.058Search in Google Scholar PubMed PubMed Central

Kumar, M. S., Kumar, S. L. A., & Sreekanth, A. (2013). An efficient triazole-based fluorescent “turn-on” receptor for nakedeye recognition of F and AcO: UV-visible, fluorescence and 1H NMR studies. Materials Science and Engineering: C, 33, 3346–3352. DOI: 10.1016/j.msec.2013.04.018.10.1016/j.msec.2013.04.018Search in Google Scholar PubMed

Lin, C. Y., Huang, K. F., & Yen, Y. P. (2013). A new selective colorimetric and fluorescent chemodosimeter for HSO4 based on hydrolysis of Schiff base. Spectrochimica Acta Part A, 115, 552–558. DOI: 10.1016/j.saa.2013.06.083.10.1016/j.saa.2013.06.083Search in Google Scholar PubMed

Liu, G., & Shao, J. (2013). Ratiometric fluorescence and colorimetric sensing of anion utilizing simple Schiff base derivatives. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 76, 99–105. DOI: 10.1007/s10847-012-0177-x.10.1007/s10847-012-0177-xSearch in Google Scholar

Ourari, A., Khelafi, M., Aggoun, D., Jutand, A., & Amatore, C. (2012). Electrocatalytic oxidation of organic substrates with molecular oxygen using tetradentate ruthenium(III)– Schiff base complexes as catalysts. Electrochimica Acta, 75, 366–370. DOI: 10.1016/j.electacta.2012.05.021.10.1016/j.electacta.2012.05.021Search in Google Scholar

Qiao, X., Ma, Z. Y., Xie, C. Z., Xue, F., Zhang, Y. W., Xu, J. Y., Qiang, Z. Y., Lou, J. S., Chen, G. J., & Yan, S. P. (2011). Study on potential antitumor mechanism of a novel Schiff base copper(II) complex: Synthesis, crystal structure, DNA binding, cytotoxicity and apoptosis induction activity. Journal of Inorganic Biochemistry, 105, 728–737. DOI: 10.1016/j.jinorgbio.2011.01.004.10.1016/j.jinorgbio.2011.01.004Search in Google Scholar PubMed

Reena, V., Suganya, S., & Velmathi, S. (2013). Synthesis and anion binding studies of azo-Schiff bases: Selective colorimetric fluoride and acetate ion sensors. Journal of Fluorine Chemistry, 153, 89–95. DOI: 10.1016/j.jfluchem.2013.05.010.10.1016/j.jfluchem.2013.05.010Search in Google Scholar

Şahin, Z. M., Doğancı, E., Yıldız, S. Z., Tuna, M., Yılmaz, F., Yerli, Y., & Görür, M. (2010). Synthesis and characterization of two-armed poly(-caprolactone) polymers initiated by Schiff’s base complexes of copper(II) and nickel(II). Synthetic Metals, 160, 1973–1980. DOI: 10.1016/j.synthmet.2010.07.018.10.1016/j.synthmet.2010.07.018Search in Google Scholar

Schiff, H. (1866). Eine neue Reihe organischer Diamine. Annalen der Chemie und Pharmacie, 140, 92–137. DOI: 10.1002/jlac.18661400106. (in German)10.1002/jlac.18661400106. (in German)Search in Google Scholar

Schilf, W., Kamieński, B., Rozwadowski, Z., Ambroziak, K., Bieg, B., & Dziembowska, T. (2004). Solid state 15N and 13C NMR study of dioxomolybdenum(VI) complexes of Schiff bases derived from trans-1,2-cyclohexanediamine. Journal of Molecular Structure, 700, 61–65. DOI: 10.1016/j.molstruc.2003.11.055.10.1016/j.molstruc.2003.11.055Search in Google Scholar

Sen, S., Mukherjee, M., Chakrabarty, K., Hauli, I., Mukhopadhyay, S. K., & Chattopadhyay, P. (2013). Cell permeable fluorescent receptor for detection of H2PO4 in aqueous solvent. Organic & Biomolecular Chemistry, 11, 1537–1544. DOI: 10.1039/c2ob27201f.10.1039/c2ob27201fSearch in Google Scholar PubMed

Sheldrick, G. M. (2008). A short history of SHELX. Acta Crystallographica Section A, 64, 112–122. DOI: 10.1107/s01087.7307043930.10.1107/s01087.7307043930Search in Google Scholar

Udhayakumari, D., Saravanamoorthy, S., & Velmathi, S. (2012). Colorimetric and fluorescent sensing of transition metal ions in aqueous medium by salicylaldimine based chemosensor. Materials Science and Engineering: C, 32, 1878–1882. DOI: 10.1016/j.msec.2012.05.005.10.1016/j.msec.2012.05.005Search in Google Scholar PubMed

Waldeck, D. H. (1991). Photoisomerization dynamics of stilbenes. Chemical Reviews, 91, 415–436. DOI: 10.1021/cr000.3a007.10.1021/cr000.3a007Search in Google Scholar

Yang, Y. X., Xue, H.M., Chen, L. C., Sheng, R. L., Li, X. Q., & Li, K. (2013). Colorimetric and highly selective fluorescence ”turn-on” detection of Cr3+ by using a simple Schiff base sensor. Chinese Journal of Chemistry, 31, 377–380. DOI: 10.1002/cjoc.201200852.10.1002/cjoc.201200852Search in Google Scholar

Yao, L. H., Wang, L., Zhang, J. F., Tang, N., & Wu, J. C. (2012). Ring opening polymerization of L-lactide by an electron-rich Schiff base zinc complex: An activity and kinetic study. Journal of Molecular Catalysis A, 352, 57–62. DOI: 10.1016/j.molcata.2011.10.012.10.1016/j.molcata.2011.10.012Search in Google Scholar

Yıldız, M., Ünver, H., Erdener, D., Kiraz, A., & İskeleli, N. O. (2009). Synthesis, spectroscopic studies and crystal structure of (E)-2-(2,4-dihydroxybenzylidene)thiosemicarbazone and (E)-2-[(1H-indol-3-yl)methylene]thiosemicarbazone. Journal of Molecular Structure, 919, 227–234. DOI: 10.1016/j.molstruc.2008.09.008.10.1016/j.molstruc.2008.09.008Search in Google Scholar

Yuan, X. J., Wang, R. Y., Mao, C. B., Wu, L., Chu, C. Q., Yao, R., Gao, Z. Y., Wu, B. L., & Zhang, H. Y. (2012). New Pb(II)-selective membrane electrode based on a new Schiff base complex. Inorganic Chemistry Communications, 15, 29–32. DOI: 10.1016/j.inoche.2011.09.031.10.1016/j.inoche.2011.09.031Search in Google Scholar

Zhang, L., Ni, X. F., Sun, W. L., & Shen, Z. Q. (2008). Polymerization of isoprene catalyzed by neodymium heterocyclic Schiff base complex. Chinese Chemical Letters, 19, 734–738. DOI: 10.1016/j.cclet.2008.03.007.10.1016/j.cclet.2008.03.007Search in Google Scholar

Zhou, G. P., Hui, Y. H., Wan, N. N., Liu, Q. J., Xie, Z. F., & Wang, J. D. (2012a). Mn(OAc)2/Schiff base as a new efficient catalyst system for the Henry reaction of nitroalkanes with aldehydes. Chinese Chemical Letters, 23, 690–694. DOI: 10.1016/j.cclet.2012.04.018.10.1016/j.cclet.2012.04.018Search in Google Scholar

Zhou, Y. M., Zhou, H., Zhang, J. L., Zhang, L., & Niu, J. Y. (2012b). Fe3+-selective fluorescent probe based on aminoantipyrine in aqueous solution. Spectrochimica Acta Part A, 98, 14–17. DOI: 10.1016/j.saa.2012.08.025.10.1016/j.saa.2012.08.025Search in Google Scholar PubMed

Received: 2015-10-26
Revised: 2016-1-21
Accepted: 2016-2-4
Published Online: 2016-5-24
Published in Print: 2016-9-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/chempap-2016-0058/html
Scroll to top button