Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Chirurgica Latviensis

The Journal of Riga Stradins University; Latvian Association of Surgeons; Latvian Association of Paediatric Surgeons

2 Issues per year

Open Access
Online
ISSN
2199-5737
See all formats and pricing
More options …

Pulsed Radiofrequency Effects on the Lumbar Dorsal Root Ganglion of the Domestic Porcine: Pilot Study

Mihails Arons
  • Corresponding author
  • Riga Stradins University Hospital, Pain Clinic, Riga, Latvia
  • Riga Stradins University, Department of Doctoral studies, Riga, Latvia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mara Pilmane / Edgars Vasilevskis / Irina Evansa
  • Riga Stradins University Hospital, Pain Clinic, Riga, Latvia
  • Riga Stradins University, Department of Doctoral studies, Riga, Latvia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Igors Panihins / Dmitry Maloshik
Published Online: 2013-05-11 | DOI: https://doi.org/10.2478/v10163-012-0011-y

Summary

Introduction. Pulsed radiofrequency (PRF) is a percutaneous minimal invasive procedure for chronic pain management that can be used when conservative treatment methods have been ineffective. The effectiveness of PRF was demonstrated in various good quality randomized control studies, but mechanisms of action are still unclear.

Aim of the Study. The aim of our study is to analyse the histological effects of PRF on the domestic porcine dorsal root ganglion (DRG), and evaluate the expression of biomarkers in gangliocytes of the subject(s).

Materials and Methods. A total 3 domestic porcines were investigated. Under general anaesthesia and X-ray control, DRG PRF was performed. Four lumbar DRGs (L1, L2, L3, L4) were randomly treated. The opposite side DRGs was used as control. One month after the procedure the animal was euthanized. The lumbar region of the spine was placed in 10% formaldehyde for a month. After this fixation DRG samples were prepared for slide analysis. They were embedded in paraffin in order to obtain 3mm thick sections, which were then cut by microtome and collected on slide glasses. Using standard immunohistochemical reactions, the materials were tinted to define biomarkers neurofilaments (NF), glial fibrillary acidic protein (GFAP), heat shock protein - 70 (Hsp-70) expression and apoptosis by transferase-mediated dUTP nick-end labeling (TUNEL) analysis.

Results. The number of cells with NF (26,0 ± 3,0 vs 16,1 ± 3,3; p<0,05), GFAP (12,0 ± 1,3 vs 3,2 ± 0,9; p<0,05) and Hsp-70 (10,0 ± 1,6 vs 4,2 ± 1,0; p<0,05) expression, were larger in the PRF side comparing with the control side. Additionally, glial cells in spinal ganglia of both sides demonstrated immunoreactivity. The instances of apoptosis were not significantly different, in statistical terms, between the control and experimental sides (18,0 ± 4,0 vs 20,0 ± 4,0; p=0,35).

Conclusions. PRF in spinal gangliocytes of lumbar region increases neural tissue cytoskeleton factors like NF and GFAP suggesting about active regeneration processes into the cells 1 month after the procedure. Spinal gangliocytes one month after PRF treatment notably increases Hsp-70 expression suggesting about activation of cellular activity and inhibitory role reducing of oxidative stress. Similar number of apoptotic cells in spinal ganglia of lumbar region after PRF and control side suggests about inhibitory role of PRF on programmed cell death and stimulation of cell survival.

Keywords : pig; morphology; pulsed radiofrequency; dorsal ganglion root; growth factors-apoptosis; stress markers

  • 1. Bomont P. The gene encoding gigaxonin, a new member in giant axonal neuropathy // Nat Genet, 2002; 26:370 - 374 Google Scholar

  • 2. Bunge MB, Bunge RP, Ris H. Ultrastructural Study of Remyelination in an Experimantal Lesion in Adult Cat Spinal Cord // The Journal of biophysical and biochemical cytology, 1961; 10(1):67 - 94 Google Scholar

  • 3. Cullen KM, Halliday GM. Chronic alcoholics have substantial glial pathology in the forebrain and diencephalon // Alcohol and alcoholism, 1994; 2:253 - 257 Google Scholar

  • 4. Darzynkiewicz Z, Juan G, Li X, Gorczyca W, Murakami T, Traganos F. Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis) // Cytometry, 1997; 27:1 - 20 CrossrefPubMedGoogle Scholar

  • 5. Eng LF, Ghirnikar RS, Lee YL. Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000) // Neorochem Res, 2000; 25:1439 - 1451 Google Scholar

  • 6. Erdine S, Bilir A, Cosman ER, Cosman ER Jr. Ultrastructural changes in axons following exposure to pulsed radiofrequency fields // Pain Pract, 2009; 9(6):407 - 417 PubMedWeb of ScienceCrossrefGoogle Scholar

  • 7. Hagemann TL, Connor JX, Messing A. Alexander Disease-Associated Glial Fibrillary Acidic Protein Mutations in Mice Induce Rosenthal Fiber Formation and a White Matter Stress Response // Journal of Neuroscience, 2006; 26(43):11162 - 11173 CrossrefGoogle Scholar

  • 8. Hamman W, Abou-Sherif S, Thompson S, Hall S. Pulsed radiofrequency applied to dorsal root ganglia causes a selective increase in ATF3 in small neurons // Eur J Pain, 2006; 10(2):171 - 176 CrossrefGoogle Scholar

  • 9. Harrison BC, Mobley PL. Phosphorylation of glial fibrillary acidic protein and vimentin by cytoskeletal-associated intermediate filament protein kinase activity in astrocytes // Journal of Neurochemistry, 1992; 58(1):320 - 327 CrossrefPubMedGoogle Scholar

  • 10. Higuchi Y, Nashold BS, Sluijter M. Exposure of the dorsal root ganglion in rats to pulsed radiofrequency currents activates dorsal horn lamina I and II neurons // Neurosurgery, 2002; 50:850 - 855 CrossrefPubMedGoogle Scholar

  • 11. Hirano A, Donnenfeld H, Sasaki S, Nakano I. Fine structural observations of neurofilamentous changes in amyotrophic lateral sclerosis // J Neuropathol Exp Neurol, 1984; 43:461 - 470 PubMedCrossrefGoogle Scholar

  • 12. Johnston-Wilson NL, Sims CD, Hofmann JP, Anderson L, Shore AD, Torrey EF, Yolken RH. Disease-specific alterations in frontal cortex brain in schizophrenia, bipolar disorder, and major depressive disorder. The Stanley Neuropathology Consortium // Mol Psychiatry, 2000; 5(2):142 - 149 CrossrefGoogle Scholar

  • 13. Kennedy P, Major EO, Williams RK, Straus SE. Down-Regulation of Glial Fibrillary Acidic Protein Expression during Acute Lytic Varicella-Zoster Infection of Cultured Human Astrocytes // Virology, 1994; 205(2):558 - 562 Google Scholar

  • 14. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics // Br J Cancer, 1972; 26:239-257 CrossrefPubMedGoogle Scholar

  • 15. Kimura Y, Yamada K, Sakai T, Mishima K, Nishimura K, Matsumoto Y, Singh M, Yoshikai Y. The regulatory role of heat shock protein 70-reactive CD4+T cells during rat listeriosis // Int Immunol, 1998; 10:117 - 130 Google Scholar

  • 16. Kirschner M. Zur Electrochirugie // Arch Klin Chir, 1931; 161:761 - 768 Google Scholar

  • 17. Lawson SN, Waddell PJ. Soma neurofilament immunoreactivity is related to cell size and fibre conduction velocity in rat primary sensory neurons // J Physiol, 1991; 435:41 - 63 Google Scholar

  • 18. Levi G, Patrizio M, Bernardo A, Petrucci TC, Agresti C. Human immunodeficiency virus coat protein gp120 inhibits the beta-adrenergic regulation of astroglial and microglial functions // Proceedings of the National Academy of Sciences of the United States of America, 1993; 90(4):1541 - 1545 Google Scholar

  • 19. Liedtke W, Edelmann W, Bieri PL, Chiu FC, Cowan NJ, Kucherlapati R, Raine CS. GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination // Neuron, 1996; 17(4):607 - 615 PubMedCrossrefGoogle Scholar

  • 20. Lindquist S. Theheat-shock response // Annu Rev Biochem, 1986; 55:1151 - 1191 CrossrefPubMedGoogle Scholar

  • 21. Podhajski RJ, Sekiguchi Y, Kikuchi S, Myers RR. The histologic effects of pulsed and continuous radiofrequency lesions at 42°C to rat dorsal root ganglion and sciatic nerve // Spine, 2005; 30(9):1008 - 1013 CrossrefGoogle Scholar

  • 22. Protasoni M, Reguzzoni M, Sangiorgi S, Reverberi C, Borsani E, Rodella L, Dario A, Tomei G, Dell Orbo C. Pulsed radiofrequency effects on the lumbar ganglion of the rat dorsal root: a morphological light and transmission electron microscopy study at acute stage // Eur Spine J, 2009; 18:437 - 478 Web of ScienceGoogle Scholar

  • 23. Rosomoff HL, Brown CJ, Sheptak P. Percutaneous radiofrequency cervical cordotomy: technique // J Neurosurg, 1965; 23:639 - 644 Web of SciencePubMedCrossrefGoogle Scholar

  • 24. Schmidt RE, Beaudet LN, Plurad SB, Dorsey DA. Axonal cytoskeletal pathology in aged and diabetic human sympathetic autonomic ganglia // Brain Res, 1997; 769:375 - 383 Google Scholar

  • 25. Shealy CN. Percutaneous radiofrequency denervation of spinal facets // J Neurosurg, 1975; 43:448 - 451 PubMedCrossrefGoogle Scholar

  • 26. Shepherd CE, McCann H, Thiel E, Halliday GM. Neurofilament-immune-reactive neurons in Alzheimer’s disease and dementia with Lewy bodies // Neurobiol Dis, 2002; 9:249 - 257 CrossrefGoogle Scholar

  • 27. Sluijter ME, Cosman E, Rittman IIWB, van Kleef M. The effects of pulsed radiofrequency field applied to the dorsal root ganglion - a preliminary report // The pain clinic, 1998; 11:109 - 117 Google Scholar

  • 28. Sluijter ME, Mehta M. Treatment of chronic back and neck pain by percutaneous thermal lesions. In: Persistent pain, modern methods of treatment // Eds Lipton S, Miles J, 1981; 3:141 - 179 Google Scholar

  • 29. Sluijter ME, van Kleef M. Characteristics and mode of action of radiofrequency lesions // Curr Rev Pain, 1998; 2:143 - 150 CrossrefGoogle Scholar

  • 30. Smith ME, Eng LF. Glial fibrillary acidic protein in chronic relapsing experimental allergic encephalomyelitis in SJL/J mice // Journal of Neuroscience Research, 1987; 18(1):203 - 208 CrossrefPubMedGoogle Scholar

  • 31. Srivaslava PK, DeLeo AB, Old LJ. Tumor rejection antigens of chemically induced carcinomas of inbred mice // Proc Natl Acad Sci, 1986; 83:3407 - 3411 CrossrefGoogle Scholar

  • 32. Tandrup T. A method for unbiased and efficient estimation of number and mean volume of specified neuron subtypes in rat dorsal root ganglion // J Comp Neurol, 1993; 329:269 - 276 Google Scholar

  • 33. Tandrup T. Are the neurons in the dorsal root ganglion pseudounipolar? A comparison of the number of neurons and number of myelinated and unmyelinated fibres in the dorsal root // J Comp Neurol, 1995; 357:341 - 347 Google Scholar

  • 34. Tardy M, Fages C, Le Prince G, Rolland B, Nunez J. Regulation of the glial fibrillary acidic protein (GFAP) and of its encoding mRNA in the developing brain and in cultured astrocytes // Adv Exp Med Biol, 1990; 265:41 - 52 Google Scholar

  • 35. Triola D, Dina G, Lorenzetti I, Malaguti MC, Morana P, Del Carro U, Comi G, Messing A, Quattrini A, Previtali SC. Loss of glial fibrillary acidic protein (GFAP) impairs Schwann cell proliferation and delays nerve regeneration after damage // Journal of Cell Science, 2006; 119:3981 - 3993 Google Scholar

  • 36. Tsan M, Gao B. Heat shock proteins and immune system // Journal of Leukocyte Biology, 2009; 85:905 - 910 PubMedCrossrefGoogle Scholar

  • 37. Uematsu S. Percutaneous electrothermocoagulation of spinal nerve trunk, ganglion and root-lets // New York, Grune and Stratton, 1977 Google Scholar

  • 38. Van Zundert J, de Louw AJ, Joosten EA, Elbert AJ Joosten, Alfons GH Kessels, Wiel Honig, Pieter JWC Dederen, Jan G Veening, Johan SH Vles, Maarten van Kleef. Pulsed and continuous radiofrequency current adjacent to the cervical dorsal root ganglion of the rat induces late cellular activity in the dorsal horn // Anesthesiology, 2005; 102:125 - 131 Google Scholar

  • 39. Wendling U, Paul L, vanderZee R, Prakken B, Singh M, van Eden W. A conserved mycobacterial heat shock protein (hsp70) sequence prevents adjuvant arthritis upon nasal administration and induces IL-10-producing Tcells that cross-react with the mammalian self-hsp70 homologue // J Immunol, 2000; 164:2711 - 2717 Google Scholar

  • 40. Yael Gavrieli, Yoav Sherman, Shmuel A, Ben-Sasson SA. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation // Cell Biol, 1992; 119(3):493 - 501 Google Scholar

About the article

Published Online: 2013-05-11

Published in Print: 2012-12-01


Citation Information: Acta Chirurgica Latviensis, Volume 12, Issue 1, Pages 51–58, ISSN (Print) 1407-981X, DOI: https://doi.org/10.2478/v10163-012-0011-y.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in