Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Current Issues in Pharmacy and Medical Sciences

Formerly Annales UMCS Sectio DDD Pharmacia

4 Issues per year

CiteScore 2016: 0.19

SCImago Journal Rank (SJR) 2016: 0.132
Source Normalized Impact per Paper (SNIP) 2016: 0.119

Open Access
See all formats and pricing
More options …

rapid detection for the inhibition of phosphoglucose isomerase from Escherichia coli by mercury(II) chloride based on TLC-autographic analysis – preliminary studies

Katarzyna Paradowska / Joanna Lutek
  • Student of Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Grazyna Ginalska
Published Online: 2014-11-25 | DOI: https://doi.org/10.2478/cipms-2014-0030


The quest for new techniques for screening inhibitors of phosphoglucose isomerase is crucially important owing to therapeutic control of chronic bacterial infections associated with the biosynthesis of bacterial biofilm. According to the new method, yellowish zones against the purple background could be visually observed where phosphoglucose isomerase activity was inhibited. The new protocol with NADPH/NBT/PMS staining for TLC-autographic method was able to detect PGI inhibition by pure reference substance as mercury(II) chloride.

Keywords: TLC-autography; phosphoglucose isomerase; inhibitor; E. coli ATCC 25922; biofilm


  • 1. Adhami H-R., Farsam H. and Krenn L.: Screening of medicinal plants from Iranian traditional medicine for acetylcholinesterase inhibition. Phytother. Res., 25, 1148, 2011.Web of ScienceCrossrefGoogle Scholar

  • 2. Adhami H-R. et al.: Compounds from Gum Ammoniacum with acetylcholinesterase inhibitory activity. Sci. Pharm., 81, 793, 2013.Google Scholar

  • 3. Bednarz B.: Purification and characterization of phosphoglucose isomerase from E. coli ATCC 25922. Master’s thesis. Medical University of Lublin, Poland, 2010.Google Scholar

  • 4. Benamar H. et al.: Screening of Algerian medicinal plants for acetylcholinesterase inhibitory activity. J. Biol. Sci., 10, 1, 2010.CrossrefGoogle Scholar

  • 5. Choma I.M. and Grzelak E.M.: Bioautography detection in thin-layer chromatography. J. Chromatogr. A., 1218, 2684, 2011.Web of ScienceGoogle Scholar

  • 6. Dewanjee S. et al.: Bioautography and its scope in the field of natural product chemistry. J. Pharm. Anal., http://dx.doi.org/10.1016/j.jpha.2014.06.002.CrossrefGoogle Scholar

  • 7. Ebrahim N. and Uebel R.A.: Direct inhibition of cyclooxygenase-2 enzyme by an extract of Harpagophytum procumbens, harpagoside and harpagide. AJPP., 5, 2209, 2011.Google Scholar

  • 8. Favre-Godal Q., Queiroz E.M., Wolfender J.-L.: Latest development in assessing antifungal activity using TLC-bioautography: A review. J. AOAC Int., 96, 1175, 2013.Google Scholar

  • 9. Frasco M.F. et al.: Mechanism of cholinesterase inhibition by inorganic mercury. FEBS. J., 274, 1849, 2007.Google Scholar

  • 10. Hassan A.M.S.: TLC bioautographic method for detecting lipase inhibitors. Phytochem. Anal., 23, 405, 2012.CrossrefWeb of ScienceGoogle Scholar

  • 11. Ishaque A., Milhausen M. and Levy R.: On the absence of cysteine in glucose 6-phosphate dehydrogenase from Leuconostoc mesenteroides. Biochem. Biophys. Res. Commun., 59, 894, 1974.Google Scholar

  • 12. Liang J.B., Yang Z.D., Shu Z.M. and Yu C.C.: A rapid thin-layer chromatography bioautographic method for detecting the monoamine oxidase inhibitors in plants. Nat. Proc. Res., 28, 1318, 2014.CrossrefGoogle Scholar

  • 13. Maninang J.S., Lizada M.C.C. and Gemma H.: Inhibition of aldehyde dehydrogenase enzyme by Durian (Durio zibethinus Murray) fruit extract. Food Chem., 117, 352, 2009.Web of ScienceGoogle Scholar

  • 14. Marston A., Kissling J. and Hostettmann K.: A rapid TLC bioautographic method for the detection of acetylcholinesterase and butyrylcholinesterase inhibitors in plants. Phytochem. Anal., 13, 51, 2002.CrossrefGoogle Scholar

  • 15. Marston A.: Thin-layer chromatography with biological detection in phytochemistry. J. Chromatogr. A,1218, 2676, 2011.Web of ScienceGoogle Scholar

  • 16. Mehrabani M. and al.: Evaluation of antifungal activities of Myrtus communis L. by bioautography method. Jundishapur J. Microbiol., 6, e8316, 2013.Google Scholar

  • 17. Moricz A.M., Tyihak E. and Ott P.G.: Usefulness of transgenic luminescent bacteria in direct bioautographic investigation of chamomile extracts. J. Planar Chromatogr., 23, 180, 2010.CrossrefWeb of ScienceGoogle Scholar

  • 18. Mroczek T. and Mazurek J.: Pressurized liquid extraction and anticholinesterase activity-based thin-layer chromatography with bioautography of Amaryllidaceae alkaloids. Anal. Chim. Acta, 633, 188, 2009.Web of ScienceGoogle Scholar

  • 19. Pandey S. et al.: A novel method for screening beta-glucosidase inhibitors. BMC Microbiol., 13, 55, 2013.Web of ScienceCrossrefGoogle Scholar

  • 20. Paradowska K., Bednarz B. and Ginalska G.: Phosphoglucose isomerase from Escherichia coli ATCC 25922 - pilot studies. Annales UMCS, Sect. DDD, XXIII, 87, 2010.Google Scholar

  • 21. Patil N.N. et al.: Bioautography quided screening of antimicrobial compounds produced by Microbispora V2. Int. Res. J. Biological Sci., 2, 65, 2013.Google Scholar

  • 22. Ramallo A., Zacchino S.A. and Furlan R.L.E.: A rapid TLC autographic method for the detection of xanthine oxidase inhibitors and superoxide scavengers. Phytochem. Anal., 17, 15, 2006.CrossrefGoogle Scholar

  • 23. Roe J.H. and Papadopoulos N.M.: The determination of fructose-6-phosphate and fructose-1,6-diphosphate. J. Biol. Chem., 210, 703, 1954.Google Scholar

  • 24. Salazar M.O. and Furlan R.L.E.: A rapid TLC autographic method for the detection of glucosidase inhibitors. Phytochem. Anal., 18, 209, 2007.Web of ScienceCrossrefGoogle Scholar

  • 25. Simoes-Pires C.A. et al.: A TLC bioautographic method for the detection of α- and β-glucosidase inhibitors in plant extracts. Phytochem. Anal., 20, 511, 2009.Web of ScienceCrossrefGoogle Scholar

  • 26. Warburg O. and Christian W.: Isolation and crystallization of enolase. Biochem. Z, 310, 384, 1942.Google Scholar

About the article

Received: 2014-02-21

Accepted: 2014-08-11

Published Online: 2014-11-25

Published in Print: 2014-06-01

Citation Information: Current Issues in Pharmacy and Medical Sciences, Volume 27, Issue 2, Pages 127–130, ISSN (Online) 2300-6676, ISSN (Print) 2084-980X, DOI: https://doi.org/10.2478/cipms-2014-0030.

Export Citation

© 2014. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in