Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Current Issues in Pharmacy and Medical Sciences

Formerly Annales UMCS Sectio DDD Pharmacia


CiteScore 2018: 0.32

SCImago Journal Rank (SJR) 2018: 0.154
Source Normalized Impact per Paper (SNIP) 2018: 0.285

Open Access
Online
ISSN
2300-6676
See all formats and pricing
More options …

Haemophilus influenzae and Haemophilus parainfluenzae occurrence in the ear effusion in pediatric patients prone to recurrent respiratory tract infections (RRTI) and with otitis media with effusion (OME)

Urszula KosikowskaORCID iD: https://orcid.org/0000-0003-4536-1750 / Edyta ChwiejczakORCID iD: https://orcid.org/0000-0003-2287-6786 / Artur Niedzielski
  • Department of Pediatric Otolaryngology, Phoniatrics and Audiology, Medical University of Lublin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sylwia AndrzejczukORCID iD: https://orcid.org/0000-0001-6301-6059 / Anna MalmORCID iD: https://orcid.org/0000-0003-1503-7634
Published Online: 2019-12-31 | DOI: https://doi.org/10.2478/cipms-2019-0032

Abstract

Introduction. Haemophilus influenzae and Haemophilus parainfluenzae are known as human-restricted respiratory microbiota representatives. The aim of the present paper was to assay haemophili prevalence in middle ear effusion specimens in pediatric patients with otitis media with effusion (OME).

Methods. A total of 86 ear effusion specimens (from the left and right ear independently) were collected from 43 pediatric patients with OME. For comparison, 58 nasopharyngeal specimens were taken from 58 pediatric patients prone to recurrent respiratory tract infections (RRTI). Isolation and identification of haemophili biotypes and antimicrobial susceptibility was accomplished by standard microbiological methods. The cell surface hydrophobicity (CSH) of isolates was assayed by the method of aggregation in ammonium sulfate (SAT).

Results. Haemophili were isolated in 25.6% (11/43) of all OME patients: in 5/43 (11.6%)– H. influenzae (biotypes II, III), in 5/43 (11.6%) – H. parainfluenzae, in 1/43 (2.3%) – both species were found. Haemophili-positive nasopharyngeal specimen was found in 27/58 (46.6%) RRTI patients: in 19/58 (32.8%) – H. influenzae, in 8/58 (13.8%) – H. parainfluenzae. About 90% of all haemophili isolates were characterised by extreme to strong CSH. Antimicrobial resistance occurred mainly among H. parainfluenzae (80%) and to a much lower percentage among H. influenzae (33.3%) isolates. The obtained data suggest that both H. influenzae and H. parainfluenzae can be involved in pathology of OME in pediatric patients. The high cell surface hydrophobicity can affect on the haemophili prevalence and ear colonization, and induces predisposition to the presence of these bacteria as a biofilm that serves as a virulence factor with great importance for the survival of these opportunistic bacteria and their persistence in the ear environment.

Keywords: Haemophilus influenzae; Haemophilus parainfluenzae; pediatric patients; otitis media with effusion; bacterial cell surface hydrophobicity

References

  • 1. Dhooge IJ. Acute Otitis Media in Children. In: Graham JM, Scadding GK, Bull PD, editors. Pediatric ENT. Heidelberg: Springer; 2007:399-420.Google Scholar

  • 2. Robb PJ. Otitis Media With Effusion. In: Graham JM, Scadding GK, Bull PD, editors. Pediatric ENT. Heidelberg: Springer;2007:413-20.Google Scholar

  • 3. Healy GB, Rosbe KW. Otitis Media and Middle Ear Effusions. In: Snow JB Jr, Ballenger JJ, editors. Ballenger’s Otorhinolaryngology Head and Neck Surgery. Hamilton: BC Decker;2003:249-60.Google Scholar

  • 4. Rosenfeld RM, Culpepper L, Doyle KJ. Clinical practice guideline: otitis media with effusion. Otolaryngol Head Neck Surg. 2004;130: 95-118.Google Scholar

  • 5. Saki N, Rahim F, Nikakhlagh S, Sarafraz M, Jafarzadeh E. Quality of life in children with recurrent acute otitis media in southwestern of Iran. Otolar Head and Neck Surg. 2012;66:267-70.Google Scholar

  • 6. Qureishi A, Lee Y, Belfield K, Birchall JP, Daniel M. Update on otitis media prevention and treatment. Infect Drug Resist. 2014;7:15-24.Google Scholar

  • 7. Tos M. Epidemiology and natural history of secretory otitis. Am J Otol. 1984;5:459-62.Google Scholar

  • 8. Teele DW, Klein JO, Rosner B. Epidemiology of otitis media during the first seven years of life in children in greater Boston: a prospective, cohort study. J Infect Dis. 1989;160:83-94.Google Scholar

  • 9. Minovi A, Dazert S. Diseases of the middle ear in childhood. GMS Curr Top Otorhinolaryngol Head Neck Surg. 2014;13(11).Google Scholar

  • 10. Bogaert D et al. Variability and diversity of nasopharyngeal microbiota in children: a metagenomic analysis. PLoS One. 2011;6: 17035.Google Scholar

  • 11. Massa HM, Cripps AW, Lehmann D. Otitis media: viruses, bacteria, biofilms and vaccines. Med J Aust. 2009;191:44-9.Google Scholar

  • 12. Ngo CC, Massa HM, Thornton RB, Cripps AW. Predominant bacteria detected from the middle ear fluid of children experiencing otitis media: a systematic review. PLoS One. 2016;11:e0150949.Google Scholar

  • 13. Khoramrooz SS et al. Frequency of Alloicoccus otitidis, Streptococcus pneumoniae, Moraxella catarrhalis and Haemophilus influenzae in children with otitis media with effusion (OME) in Iranian patients. Auris Nasus Larynx. 2012;39:369-73.Google Scholar

  • 14. Privitera A et al. Molecular epidemiology and phylogenetic analysis of Haemophilus parainfluenzae from chronic obstructive pulmonary disease exacerbations. Eur J Epidemiol. 1998;14:405-12.Google Scholar

  • 15. Ariza Jiménez AB, Moreno-Perez D, Núñez Cuadros EA. Invasive disease caused by Haemophilus parainfluenzae III in a child with uropathy. J Med Microbiol. 2013;62:792-3.Google Scholar

  • 16. Barkai G, Leibovitz E, Givon-Lavi N, Dagan R. Potential contribution by nontypable Haemophilus influenzae in protracted and recurrent acute otitis media. Pediatr Infect Dis J. 2009;28:466-71.Google Scholar

  • 17. Berndsen MR, Erlendsdóttir H, Gottfredsson M. Evolving epidemiology of invasive Haemophilus infections in the post-vaccination era: results from a long-term population-based study. Clin Microbiol Infect. 2012;18:918-23.Google Scholar

  • 18. Ladhani S, Slack MP, Heath PT, von Gottberg A, Chandra M, Ramsay ME. Invasive Haemophilus influenzae disease, Europe, 1996-2006. Emerging Infect Dis. 2010;16:455-63.Google Scholar

  • 19. Mitchell JL, Hill SL. Immune response to Haemophilus parainfluenzae in patients with chronic obstructive lung disease. Clin Diagn Lab Immunol. 2000;7:25-30.Google Scholar

  • 20. Rele M, Giles M, Daley AJ. Invasive Haemophilus parainfluenzae maternal–infant infections: an Australasian perspective and case report. Aust N Z J Obstet Gynaecol. 2006;46:258-60.Google Scholar

  • 21. Howie VM, Ploussard JH, Lester RL Jr. Otitis media: a clinical and bacteriological correlation. Pediatrics. 1970;45:29-35.Google Scholar

  • 22. Bluestone CD, Stephenson JS, Martin LM. Ten-year review of otitis media pathogens. Pediatr Infect Dis J. 1992;11:7-11.Google Scholar

  • 23. Kilpi T, Herva E, Kaijalainen T, Syrjänen R, Takala AK. Bacteriology of acute otitis media in a cohort of Finnish children followed for the first two years of life. Pediatr Infect Dis J. 2001;20:654-62.Google Scholar

  • 24. Cardines R, Giufrè M, Ciofidegli Atti ML, Accogli M, Mastrantonio P, Cerquetti M. Haemophilus parainfluenzae meningitis in an adult associated with acute otitis media. New Microbiol. 2009;32:213-5.Google Scholar

  • 25. Chonmaitree T, Hendrickson KJ. Detection of respiratory viruses in the middle ear fluids of children with acute otitis media by multiplex reverse transcription-polymerase chain reaction assay. Pediatr Infect Dis J. 2000;19:258-60.Google Scholar

  • 26. Casey JR, Pichichero ME. Changes in frequency and pathogens causing acute otitis media in 1995-2003. Pediatr Infect Dis J. 2004;23: 824-8.Google Scholar

  • 27. Klein JO, Bluestone CD. Otitis media. In: Feigin RD, Cherry JD, Demmler GJ, Kaplan SL, editors. Textbook of pediatric infectious diseases 5. Philadelphia: Saunders;2004:215-35.Google Scholar

  • 28. Goleva et al. The effects of airway microbiome on corticosteroid responsiveness in asthma. Am J Respir Crit Care Med. 2013;188: 1193-201.Google Scholar

  • 29. Faden H et al. Relationship between nasopharyngeal colonization and the development of otitis media in children. Tonawanda/Williamsville Pediatrics. J Infect Dis. 1997;175:1440-5.Google Scholar

  • 30. Park CW et al. Detection rates of bacteria in chronic otitis media with effusion in children. J K Med Scien. 2004;19:735-8.Google Scholar

  • 31. Watson KC, Kerr EJ, Hinks CA. Distribution of biotypes of Haemophilus influenzae and H. parainfluenzae in patients with cystic fibrosis. J Clin Pathol. 1985;38:750-53.Google Scholar

  • 32. Houang et al. Comparison of genital and respiratory carriage of Haemophilus parainfluenzae in men. J Med Microbiol. 1989;28: 119-23.Google Scholar

  • 33. Martel, AY, St-Laurent G, Dansereau LA, Bergeron MG. Isolation and biochemical characterization of Haemophilus species isolated simultaneously from the oropharyngeal and anogenital areas. J Clin Microbiol. 1989;27:1486-9.Google Scholar

  • 34. Taylor DC et al. Biotypes of Haemophilus parainfluenzae from the respiratory secretions in chronic bronchitis. J Med Microbiol. 1992;36:279-82.Google Scholar

  • 35. Rhind GB, Gould GA, Ahmad F, Croughan MJ, Calder MA. Haemophilus biotypes in respiratory disease. Thorax. 1987;42:151-2.Google Scholar

  • 36. Knobloch JK, Von Osten H, Horstkotte MA, Rohde H, Mack D. Minimal attachment killing (MAK): a versatile method for susceptibility testing of attached biofilm-positive and –negative Staphylococcus epidermidis. Med Microbiol Immunol. 2002;191: 107-14.Google Scholar

  • 37. Zhang XS, Garcia-Contreras R, Wood TK.. YcfR (BhsA) influences Escherichia coli biofilm formation through stress response and surface hydrophobicity. J Bacteriol. 2007;189:3051-62.Google Scholar

  • 38. Das MP. Effect of cell surface hydrophobicity in microbial biofilm formation. Euro J Exp Bio. 2014;4: 254-6.Google Scholar

  • 39. Paluch-Oleś J et al. The phenotypic and genetic biofilm formation characteristics of coagulase-negative staphylococci isolates in children with otitis media. I J of Pediatr Otorhinolar. 2011;75:126-30.Google Scholar

  • 40. Kosikowska et al. Nasopharyngeal and adenoid colonization by Haemophilus influenzae and Haemophilus parainfluenzae in children undergoing adenoidectomy and the ability of bacterial isolates to biofilm production. Medicine. 2015;94:799.Google Scholar

  • 41. Kosikowska et al. Changes in the prevalence and biofilm formation of Haemophilus influenzae and Haemophilus parainfluenzae from the respiratory microbiota of patients with sarcoidosis. BMC Infect Dis. 2016;16:449.Google Scholar

  • 42. Burmolle M, Bahl MI, Jensen LB, Sorensen SJ, Hansen LH. Type 3 fimbriae, encoded by the conjugative plasmid pOLA52, enhance biofilm formation and transfer frequencies in Enterobacteriaceae strains. Microbiol. 2008;154:187-95.Google Scholar

  • 43. Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Inter J Antimicrob Ag. 2010;35: 322-32.Google Scholar

  • 44. Jensen PO, Givskov M, Bjarnsholt T, Moser C. The immune system vs. Pseudomonas aeruginosa biofilms. FEMS Immunol Med Mic. 2010;59:292-305.Google Scholar

  • 45. Daniel M, Imtiaz-Umer S, Fergie N, Birchall JP, Bayston R. Bacterial involvement in otitis media with effusion. Int J Pediatr Otorhinolaryngol. 2012;76:1416-22.Google Scholar

About the article

Received: 2019-05-06

Accepted: 2019-09-30

Published Online: 2019-12-31

Published in Print: 2019-12-01


Citation Information: Current Issues in Pharmacy and Medical Sciences, Volume 32, Issue 4, Pages 183–188, ISSN (Online) 2300-6676, DOI: https://doi.org/10.2478/cipms-2019-0032.

Export Citation

© 2019 Urszula Kosikowska et al., published by Sciendo. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in