Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Curved and Layered Structures

1 Issue per year

Open Access
See all formats and pricing
More options …

Couple stress theory of curved rods. 2-D, high order, Timoshenko’s and Euler-Bernoulli models

V.V. Zozulya
  • Centro de Investigacion Cientifica de Yucatan, A.C., Calle 43, No 130, Colonia: Chuburna de Hidalgo, C.P. 97200, Merida, Yucatan, Mexico
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-06-14 | DOI: https://doi.org/10.1515/cls-2017-0009


New models for plane curved rods based on linear couple stress theory of elasticity have been developed.2-D theory is developed from general 2-D equations of linear couple stress elasticity using a special curvilinear system of coordinates related to the middle line of the rod as well as special hypothesis based on assumptions that take into account the fact that the rod is thin. High order theory is based on the expansion of the equations of the theory of elasticity into Fourier series in terms of Legendre polynomials. First, stress and strain tensors, vectors of displacements and rotation along with body forces have been expanded into Fourier series in terms of Legendre polynomials with respect to a thickness coordinate.Thereby, all equations of elasticity including Hooke’s law have been transformed to the corresponding equations for Fourier coefficients. Then, in the same way as in the theory of elasticity, a system of differential equations in terms of displacements and boundary conditions for Fourier coefficients have been obtained. Timoshenko’s and Euler-Bernoulli theories are based on the classical hypothesis and the 2-D equations of linear couple stress theory of elasticity in a special curvilinear system. The obtained equations can be used to calculate stress-strain and to model thin walled structures in macro, micro and nano scales when taking into account couple stress and rotation effects.

Keywords : Curved rod; couple stress; Legendre polynomial;Timoshenko theory; Euler-Bernoulli theory; high order theory


  • [1] Maugin, G.A., Metrikine, A.V. (eds.) Mechanics of GeneralizedContinua: One hundred years after the Cosserats. Springer, NewYork, 2010.Google Scholar

  • [2] Nowacki W., Olszak W. (eds.) Micropolar Elasticity, Springer-Verlag. New York, 1972.Google Scholar

  • [3] Truesdell, C., Toupin, R. The classical field theories. In: Flügge, S. (ed.) Handbuch der Physik, 1960, vol. III/1, p. 226-793., Springer, Berlin.Google Scholar

  • [4] Cosserat, E., Cosserat, F. Théorie des corps déformables. Hermanet Fils, Paris, 1909, 242 p.Google Scholar

  • [5] Altenbach H. Eremeev V. A. Shell Like Structures. Non ClassicalTheories and Applications. - Springer, New York, 2011. - 761 p.Google Scholar

  • [6] Altenbach H., Eremeyev V.A., Lebedev L.P. Micropolar Shells asTwo-dimensional Generalized Continua Models, in: AltenbachH., et al. (eds.) Mechanics of Generalized Continua, Springer, Berlin, 2011.Google Scholar

  • [7] Altenbach H., Eremeyev V.A. (eds.) Generalized continua fromthe theory to engineering applications. - Springer, New York, 2013, 403 p.Google Scholar

  • [8] Altenbach H., Forest S., Krivtsov A. (eds.) Generalized Continuaas Models forMaterials.WithMulti-scale Effects or UnderMultifieldActions, - Springer, New York, 2013, 336 p.Google Scholar

  • [9] Altenbach H., Maugin G.A., Erofeev V., (eds.) Mechanics of GeneralizedContinua.- Springer, New York, 2011.Google Scholar

  • [10] Capriz, G., Continua with Microstructure, Springer-Verlag, NewYork, 1989.Google Scholar

  • [11] Dyszlewicz J. Micropolar Theory of Elasticity, Springer-VerlagBerlin, 2004.Google Scholar

  • [12] Eremeyev V.A., Lebedev L.P., Altenbach H. Foundations of MicropolarMechanics, Springer, New York, 2013, 144 p.Google Scholar

  • [13] Erofeev, V.I. Wave Processes in Solids with Microstructure.World Scientific, Singapore, 2003.Google Scholar

  • [14] Kunin I.A. Elastic Media with Microstructure I. One-DimensionalModels, Springer, Berlin Heidelberg, 1982.Google Scholar

  • [15] Kunin I.A. Elastic Media with Microstructure II. Three-Dimensional Models, Springer, Berlin Heidelberg, 1983.Google Scholar

  • [16] Rubin M.B. Cosserat Theories. Shells, Rods and Points, Springer, New York, 2000, 495 p.Google Scholar

  • [17] Savin G.N. Stress Distribution Around Holes, National Aeronauticsand Space Administration, Washington, D. C., 1970, 1008p.Google Scholar

  • [18] Sokolowski M. Theory of Couple-Stresses in Bodies with ConstrainedRotations, Springer-Verlag, Vien, 1972.Google Scholar

  • [19] Teisseyre R., Nagahama H., Majewski E. (eds.) Physics of AsymmetricContinuum. Extreme and Fracture Processes. EarthquakeRotation and SolitonWaves, Springer-Verlag, Berlin Heidelberg, 2008, 300 p.Google Scholar

  • [20] Aero, E.L., Kuvshinskii, E.V. Fundamental equations of the theoryof elastic media with rotationally interacting particles. SovietPhysics, Solid State, 1961, 2(7), 1272-1281.Google Scholar

  • [21] Aero, E.L., Kuvshinskii, E.V. Continuum theory of asymmetricelasticity. Equilibriumof an isotropic body, Soviet Physics, SolidState, 1963, 5, 1892-1897.Google Scholar

  • [22] Aero, E.L., Kuvshinskii, E.V. Continuum theory of asymmetricelasticity. Equilibriumof an isotropic body, Soviet Physics, SolidState, 1964, 6, 2689-2699.Google Scholar

  • [23] Bulygin A.N., Kuvshinskii E.V. Plane strain in the asymmetrictheory of elasticity, Journal of Applied Mathematics and Mechanics, 1967, p. 568-373.Google Scholar

  • [24] Chen S., Wang T. Strain gradient theory with couple stress forcrystalline solids, European Journal of Mechanics - A/Solids, 2001, 20, p. 739-756.CrossrefGoogle Scholar

  • [25] Eringen A.C. Linear Theory of Micropolar Elasticity, Journal ofMathematics and Mechanics, 1966, 15(6), 909-923.Google Scholar

  • [26] Hadjesfandiari A.R., Dargush G.F. Couple stress theory forsolids, International Journal of Solids and Structures, 2011, 48, 2496-2510.Google Scholar

  • [27] Koiter WT. Couple stresses in the theory of elasticity, I andII. Proceedings of the Koninklijke Nederlandse Akademie vanWetenschappen. Series B. Physical Sciences, 1964, 67, 17-44.Google Scholar

  • [28] Mindlin R.D. Influence of Couple-stresses on Stress Concentrations, Experimental Mechanics, 1962, 3, 1-7.Google Scholar

  • [29] Mindlin R.D. Micro-structure in Linear Elasticity Archive for RationalMechanics and Analysis, 1964, 16, 51-78.Google Scholar

  • [30] Mindlin R.D., Tiersten H.F. Effects of Couple-stresses in LinearElasticity, Archive for Rational Mechanics and Analysis, 1962, 11, 415-448.Google Scholar

  • [31] Palmov V.A. Fundamental equations of the theory of asymmetricelasticity, Journal of AppliedMathematics and Mechanics, 1964, 28(3), 496-505.Google Scholar

  • [32] Palmov V.A. The plane problem in the theory of nonsymmetric, Journal of Applied Mathematics and Mechanics, 1964, 28(6), 1341-1345.Google Scholar

  • [33] Park S.K., Gao X.-L. Variational formulation of a modified couplestress theory and its application to a simple shear problem, TheJournal of Applied Mathematics and Physics (ZAMP), 2008, 59, 904-917.Google Scholar

  • [34] Savin G.N., Nemish Yu.N. Investigation into stress concentrationin the moment theory of elasticity. A survey, InternationalApplied Mechanics, 4(12), 1968, p. 1-15.Google Scholar

  • [35] Toupin R.A. Elastic Materials with Couple-stresses, Archive forRational Mechanics and Analysis, 1962, 11, 385-414.Google Scholar

  • [36] Toupin, R.A. Theories of elasticity with couple-stress, Archivefor Rational Mechanics and Analysis, 1962, 17, 85-112.Google Scholar

  • [37] Yang F., Chong A.C.M., Lam D.C.C., Tong P., Couple stress basedstrain gradient theory for elasticity, International Journal ofSolids and Structures, 2002, 39, 2731-2743.Google Scholar

  • [38] Eringen A.C. Microcontinuum Field Theories I. Foundations andSolids, Springer, New York, 1999.Google Scholar

  • [39] Eringen A.C. Microcontinuum Field Theories II. Fluent Media, Springer, New York, 2001.Google Scholar

  • [40] Nowacki W. Theory of axymmetric elasticity, Pergamon Press, New York, 1986.Google Scholar

  • [41] Neff P., Münch I., Ghiba I.-D., Madeo A. On some fundamentalmisunderstandings in the indeterminate couple stress model.A comment on the recent papers A.R. Hadjesfandiari and G.F.Dargush, International Journal of Solids and Structures, 2016, 81, 233-243.Google Scholar

  • [42] Ericksen J.L., Truesdell C. Exact Theory of Stress and Strain inRods and Shells, Archive for Rational Mechanics and Analysis, 1958, 1(1), 295-323.Google Scholar

  • [43] Alashti A. R. , Abolghasemi A. H. A Size-dependent Bernoulli-Euler Beam Formulation based on a New Model of Couple StressTheory, International Journal of Engineering, 2014, 6, 951-960.Google Scholar

  • [44] Gao X.-L., Mahmoud F.F. A new Bernoulli-Euler beam model incorporatingmicrostructure and surface energy effects, The Journalof AppliedMathematics and Physics (ZAMP), 2014, 65, 393-404.Google Scholar

  • [45] Park S.K., Gao X.-L., Bernoulli-Euler beam model based on amodified couple stress theory, Journal of Micromechanics andMicroengineering, 2006, 16 2355-2359Google Scholar

  • [46] Reddy J.N. Microstructure-dependent couple stress theoriesof functionally graded beams, Journal of the Mechanics andPhysics of Solids, 2011, 59, 2382-2399.Google Scholar

  • [47] Asghari M. , Kahrobaiyan M. H., Rahaeifard M. , Ahmadian M. T.Investigation of the size effects in Timoshenko beams based onthe couple stress theory, Archive of Applied Mechanics, 2011, 81, 863-874.CrossrefGoogle Scholar

  • [48] Dehrouyeh-Semnani A.M., Bahrami A. On size-dependent Timoshenkobeam element based on modified couple stress theory, International Journal of Engineering Science, 2016, 107, 134-148.Google Scholar

  • [49] Dehrouyeh-Semnani A.M., Nikkhah-Bahrami A. The influenceof size-dependent shear deformation on mechanical behaviorof microstructures-dependent beam based on modified couplestress theory, Composite Structures, 2015, 123, 325-336.Google Scholar

  • [50] Kahrobaiyan M.H. , Asghari M., Ahmadian M.T. A Timoshenkobeam element based on the modified couple stress theory, InternationalJournal of Mechanical Sciences, 2014, 79, 75-83.Google Scholar

  • [51] Ma H.M., Gao X.-L., Reddy J.N. A microstructure dependent Timoshenkobeam model based on a modified couple stress theory, Journal of the Mechanics and Physics of Solids, 2008, 56, 3379-3391.CrossrefGoogle Scholar

  • [52] Simsek M., Reddy J.N. Bending and vibration of functionallygraded microbeams using a new higher order beam theory andthe modified couple stress theory, International Journal of EngineeringScience, 2013, 64, 37-53.Google Scholar

  • [53] Iesan D. Classical and generalized models of elastic rods, Chapman& Hall/CRC, Boca Raton, 2008, 349 p.Google Scholar

  • [54] Zhilin P.A. Applied Mechanics - Theory of Thin Elastic Rods, Politekhnikal.University Publisher, St. Petersburg, 2007. (in Russian).Google Scholar

  • [55] Zozulya V.V. Micropolar curved rods. 2-D, high order, Timoshenko’sand Euler-Bernoulli models. Curved and LayeredStructures, 2017, 4, 104-118.Google Scholar

  • [56] Altenbach J., Altenbach H., Eremeyev V.A. On generalizedCosserat-type theories of plates and shells: a short review andbibliography, Archive of Applied Mechanics, 2010, 80(1), 73-92.Google Scholar

  • [57] Dashtaki P. M., Beni Y.T. Effects of Casimir Force and ThermalStresses on the Buckling of Electrostatic Nanobridges Based onCouple Stress Theory, Arabian Journal for Science and Engineering, 2014, 39, 5753-5763.Google Scholar

  • [58] Karimipour I., Beni Y.T., Koochi A., Abadyan M. Using couplestress theory for modeling the size-dependent instabilityof double-sided beam-type nanoactuators in the presence ofCasimir force, Journal of the Brazilian Society of Mechanical Sciencesand Engineering, 2016, 38, 1779-1795.Google Scholar

  • [59] Lyshevski S.E. Nano- and Micro-Electromechanical Systems.Fundamentals of Nano- and Microengineering. 2nd edition, CRCPress, 2005.Google Scholar

  • [60] Shaat A. Abdelkefi A. Modeling the material structure and couplestress effects of nanocrystalline silicon beams for pull-inand bio-mass sensing applications, International Journal of MechanicalSciences, 2015, 101-102, 280-291.Google Scholar

  • [61] Kil’chevskiy N.A., Fundamentals of the Analytical Mechanics ofShells, Published by NASA,TT F-292, Washington, D.C., 1965.Google Scholar

  • [62] Vekua I.N. Shell theory, general methods of construction, PitmanAdvanced Pub. Program., Boston, 1986.Google Scholar

  • [63] Pelekh B.L., Sukhorol’skii M.A. Contact problems of the theoryof elastic anisotropic shells, Naukova dumka, Kiev, 1980. (inRussian).Google Scholar

  • [64] Nikabadze M.U. Development of the Orthogonal PolynomialMethod in Mechanics of Micropolar and Classical Elastic Bodies.Moscow University press, Moscow, 2014. (in Russian).Google Scholar

  • [65] Nemish Yu. N., Khoma I.Yu. Stress-strain state of non-thin platesand shells. Generalized theory (survey), International AppliedMechanics, 1993, 29(11), 873-902.Google Scholar

  • [66] Zozulya V.V. The combines problem of thermoelastic contact betweentwo plates through a heat conducting layer, Journal of AppliedMathematics and Mechanics. 1989, 53(5), 622-627.Google Scholar

  • [67] Zozulya V.V. Contact cylindrical shell with a rigid body throughthe heat-conducting layer in transitional temperature field, Mechanicsof Solids, 1991, 2, 160-165.Google Scholar

  • [68] Zozulya VV. Laminated shells with debonding between laminasin temperature field, International Applied Mechanics, 2006, 42(7), 842-848.CrossrefGoogle Scholar

  • [69] Zozulya V.V. Mathematical Modeling of Pencil-Thin Nuclear FuelRods. In: Gupta A., ed. Structural Mechanics in Reactor Technology.- Toronto, Canada. 2007. p. C04-C12.Google Scholar

  • [70] Zozulya V. V. A high-order theory for functionally graded axiallysymmetric cylindrical shells, Archive of Applied Mechanics, 2013, 83(3), 331-343.CrossrefGoogle Scholar

  • [71] Zozulya V. V. A high order theory for linear thermoelastic shells: comparison with classical theories, Journal of Engineering.2013, Article ID 590480, 19 pagesGoogle Scholar

  • [72] Zozulya V.V. A higher order theory for shells, plates and rods.International Journal of Mechanical Sciences, 2015, 103, 40-54.Google Scholar

  • [73] Zozulya V.V., Saez A. High-order theory for arched structuresand its application for the study of the electrostatically actuatedMEMS devices, Archive of Applied Mechanics, 2014, 84(7), 1037-1055.Google Scholar

  • [74] Zozulya V.V., Saez A. A high order theory of a thermo elasticbeams and its application to theMEMS/NEMS analysis and simsimulations.Archive of Applied Mechanics, 2015, 84, 1037-1055.Google Scholar

  • [75] Zozulya V. V., Zhang Ch. A high order theory for functionally graded axisymmetric cylindrical shells, International Journal of Mechanical Sciences, 2012, 60(1), 12-22.Google Scholar

  • [76] Lebedev N.N. Special functions and their applications. Prentice-Hall, 1965, 322.Google Scholar

About the article

Received: 2016-11-05

Accepted: 2016-12-27

Published Online: 2017-06-14

Published in Print: 2017-01-26

Citation Information: Curved and Layered Structures, Volume 4, Issue 1, Pages 119–133, ISSN (Online) 2353-7396, DOI: https://doi.org/10.1515/cls-2017-0009.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in