Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Curved and Layered Structures

Editor-in-Chief: Tornabene, Francesco


CiteScore 2018: 1.60

SCImago Journal Rank (SJR) 2018: 0.546
Source Normalized Impact per Paper (SNIP) 2018: .496

Open Access
Online
ISSN
2353-7396
See all formats and pricing
More options …

Three-dimensional flat shell-to-shell coupling: numerical challenges

Kuo Guo / Ghadir Haikal
Published Online: 2017-11-24 | DOI: https://doi.org/10.1515/cls-2017-0020

Abstract

The node-to-surface formulation is widely used in contact simulations with finite elements because it is relatively easy to implement using different types of element discretizations. This approach, however, has a number of well-known drawbacks, including locking due to over-constraint when this formulation is used as a twopass method. Most studies on the node-to-surface contact formulation, however, have been conducted using solid elements and little has been done to investigate the effectiveness of this approach for beam or shell elements. In this paper we show that locking can also be observed with the node-to-surface contact formulation when applied to plate and flat shell elements even with a singlepass implementation with distinct master/slave designations, which is the standard solution to locking with solid elements. In our study, we use the quadrilateral four node flat shell element for thin (Kirchhoff-Love) plate and thick (Reissner-Mindlin) plate theory, both in their standard forms and with improved formulations such as the linked interpolation [1] and the Discrete Kirchhoff [2] elements for thick and thin plates, respectively. The Lagrange multiplier method is used to enforce the node-to-surface constraints for all elements. The results show clear locking when compared to those obtained using a conforming mesh configuration.

Keywords: contact; multi-point constraints; surface locking; flat shell elements

References

  • [1] Olgierd C. Zienkiewicz, Zhongnian Xu, Ling Fu Zeng, Alf Samuelsson, and Nils-Erik Wiberg. Linked interpolation for reissner-mindlin plate elements: Part I A simple quadrilateral. International Journal for Numerical Methods in Engineering, 36(18):3043-3056, 1993. Google Scholar

  • [2] Jean-Louis Batoz and Mabrouk Ben Tahar. Evaluation of a new quadrilateral thin plate bending element. International Journal for Numerical Methods in Engineering, 18:1655-1677, 1982. CrossrefGoogle Scholar

  • [3] D. Chapelle and K. J. Bathe. The Finite Element Analysis of Shells: Fundamentals. Springer, first edition, 2003. Google Scholar

  • [4] P. Papadopoulos and R. L. Taylor. A mixed formulation for the finite element solution of contact problems. Computer Methods in Applied Mechanics and Engineering, 94(3):373-389, 1992.CrossrefGoogle Scholar

  • [5] N. El-Abbasi and K.-J. Bathe. Stability and patch test performance of contact discretizations and a new solution algorithm. Computers and Structures, 79:1473-1486, 2001. Google Scholar

  • [6] M. Ainsworth. Essential boundary conditions and multi-point constraints in finite element analysis. Computer Methods in Applied Mechanics and Engineering, 190:6323-6339, 2001. Google Scholar

  • [7] G. Haikal. A stabilized finite element formulation of non-smooth contact. PhD thesis, University of Illinois at Urbana-Champaign, 2009. Google Scholar

  • [8] Michael A. Puso and Tod A. Laursen. A mortar segment-tosegment contact method for large deformation solid mechanics. Computer Methods in Applied Mechanics and Engineering, 193(6-8):601-629, 2004. Google Scholar

  • [9] B. I. Wohlmuth. A mortar finite element using dual spaces for the Lagrange multiplier. SIAM Journal of Numerical Analysis, 38:989-1012, 2001. Google Scholar

  • [10] J. M. Solberg and P. Papadopoulos. An analysis of dual formulations for the finite element solution of two-body contact problems. Computer Methods in Applied Mechanics and Engineering, 194:2734-2780, 2005. Google Scholar

  • [11] J. Nitsche. Ŭber ein variationsprinzip zur lösung von Dirichlet problemen bei verwendung von teilräumen, die keinen randbedingungen unterworfen sind. Abhandlungen in der Mathematik an der Universität Hamburg, 36:9-15, 1971. Google Scholar

  • [12] A. Hansbo and P. Hansbo. An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems. Computer Methods in Applied Mechanics and Engineering, 191:5537-5552, 2002. Google Scholar

  • [13] Przemyslaw Litewka. Finite element analysis of beam-to-beam contact, volume 53. Springer Science & Business Media, 2010.Google Scholar

  • [14] F. Brezzi and M. Fortin. Mixed and hybrid finite element methods, vol. 15 of Springer Series in Computational Mathematics, 1991.CrossrefGoogle Scholar

  • [15] Massimiliano Repupilli. A robust method for beam-to-beamcontact problems based on a novel tunneling constraint. 2012. Google Scholar

  • [16] K. Kamran, R. Rossi, and E. Ŏnate. A contact algorithm for shell problems via Delaunay-based meshing of the contact domain. Computational Mechanics, 52(1):1-16, 2013. CrossrefWeb of ScienceGoogle Scholar

  • [17] A. Adini and R.W. Clough. Analysis of plate bending by the finite element method. N.S.F. report G., (7337), 1961. Google Scholar

  • [18] Olek C Zienkiewicz and Robert L Taylor. The finite element method for solid and structural mechanics. Butterworthheinemann, 2005. Google Scholar

  • [19] G. Kirchhoff. Uber dasgleichgewicht und diebewegung einer elastischenscheibe. J. ReineAngew.Math., 40:51-58, 1850. Google Scholar

  • [20] O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method for Solid and Structural Mechanics. Butterworth-Heinemann, Sixth edition, 2005. Google Scholar

  • [21] J. Fish, L. Pan, V. Belsky, and S. Gomaa. Unstructured multigrid method for shells. International Journal for Numerical Methods in Engineering, 39(7):1181-1197, 1996. CrossrefGoogle Scholar

  • [22] E. Reissner. The effect of transverse shear deformation on the bending of elastic plates. ASME Journal of Applied Mechanics, 12:68-77, 1945. Google Scholar

  • [23] R.D. Mindlin. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. ASME Journal of Applied Mechanics, 18:31-38, 1951. Google Scholar

  • [24] S. Ahmad, B. M. Irons, and O. C. Zienkiewicz. Analysis of thick and thin shell structures by curved finite elements. International Journal for Numerical Methods in Engineering, 3(2):419-451, 1970. Google Scholar

  • [25] O. C. Zienkiewicz, R. L. Taylor, and J. M. Too. Reduced integration technique in general analysis of plates and shells. International Journal for Numerical Methods in Engineering, 3(2):275- 290, 1971. CrossrefGoogle Scholar

  • [26] O. C. Zienkiewicz and E Hinton. Reduced integration, function smoothing and non-conformity in finite element analysis (with special reference to thick plates). Journal of the Franklin Institute, 302:443-461, 1976. Google Scholar

  • [27] E. D. L. Pugh, E Hinton, and O. C. Zienkiewicz. A study of quadrilateral plate bending elements with reduced integration. International Journal for Numerical Methods in Engineering, 12(7):1059-1079, 1978.CrossrefGoogle Scholar

About the article

Received: 2017-06-25

Accepted: 2017-10-02

Published Online: 2017-11-24

Published in Print: 2017-11-27


Citation Information: Curved and Layered Structures, Volume 4, Issue 1, Pages 299–313, ISSN (Online) 2353-7396, DOI: https://doi.org/10.1515/cls-2017-0020.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in