Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Curved and Layered Structures

Open Access
Online
ISSN
2353-7396
See all formats and pricing
More options …

Stability analysis of a rotationally restrained microbar embedded in an elastic matrix using strain gradient elasticity

Mustafa Özgür Yayli
Published Online: 2019-01-18 | DOI: https://doi.org/10.1515/cls-2019-0001

Abstract

The buckling of rotationally restrained microbars embedded in an elastic matrix is studied within the framework of strain gradient elasticity theory. The elastic matrix is modeled in this study as Winkler’s one-parameter elastic matrix. Fourier sine series with a Fourier coefficient is used for describing the deflection of the microbar. An eigenvalue problem is obtained for buckling modes with the aid of implementing Stokes’ transformation to force boundary conditions. This mathematical model bridges the gap between rigid and the restrained boundary conditions. The influences of rotational restraints, small scale parameter and surrounding elastic matrix on the critical buckling load are discussed and compared with those available in the literature. It is concluded from analytical results that the critical buckling load of microbar is dependent upon rotational restraints, surrounding elastic matrix and the material scale parameter. Similarly, the dependencies of the critical buckling load on material scale parameter, surrounding elastic medium and rotational restraints are significant.

Keywords: Buckling; microbar; embedded in an elastic matrix; rotational restraints; Fourier sine series

References

  • [1] Poole, W. J.; Ashby, M. F.; Fleck, N. A. Micro-hardness of annealed and work-hardened copper polycrystals. Scripta Materialia, 1996, 34, 559-564.Google Scholar

  • [2] Lam, D. C. C.; Yang, F.; Chong, A. C. M.; Wang, J.; Tong. P. Experiments and theory in strain gradient elasticity. J Mech Phys Solids, 2003, 51, 1477-1508.Google Scholar

  • [3] McFarland, A. W.; Colton, J. S. Role of material microstructure in plate stiffness with relevance to microcantilever sensors., J Micromech Microeng , 2005 15, 1060-1067.CrossrefGoogle Scholar

  • [4] Eringen, A. C. Theory of micropolar plates. Z Angew Math Phys , 1967, 18, 12-30.CrossrefGoogle Scholar

  • [5] Mindlin, R.D.; H. F.Tiersten. Effects of couple-stresses in linear elasticity. ArchRation Mech Anal , 1962, 11, 415-448.Google Scholar

  • [6] Koiter, W. T. Couple stresses in the theory of elasticity I and II. Proc K Ned Akad Wet (B), 1964, 67, 17-44.Google Scholar

  • [7] Toupin, R. A. Theory of elasticity with couple stresses.Arch Ration Mech Anal, 1964 17, 85-112.CrossrefGoogle Scholar

  • [8] Fleck, N. A.; Hutchinson, J. W. A phenomenological theory for strain gradient effects in plasticity. J Mech Phys Solids, 1993, 41, 1825-1857.Google Scholar

  • [9] Fleck, N. A.;Hutchinson, J.W. A reformulation of strain gradient plasticity. J Mech Phys Solids, 2001, 49, 2245-2271.Google Scholar

  • [10] Eringen, A. C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface-waves. J. Appl. Phys., 1983, 54, 4703-4710 1983.Google Scholar

  • [11] Eringen, A. C.; Edelen. D. G. B. On nonlocal elasticity, International Journal of Engineering Science, 1972, 10,233-248.Google Scholar

  • [12] Sudak, L. J. Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. J. Appl. Phys., 2003, 94, 7281-7287.CrossrefGoogle Scholar

  • [13] Demir, Ç.; Civalek, O. Torsional and longitudinal frequency and wave response of microtubules based on the nonlocal continuum and nonlocal discrete models. Applied Mathematical Modelling, 2013, 37, 9355-9367.Google Scholar

  • [14] Peddieson, J.; Buchanan, G. R.; McNitt, R. P. Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci., 2003, 41, 305-312.CrossrefGoogle Scholar

  • [15] Reddy, J. N.; Pang, S. D. Nonlocal continuum theories of beam for the analysis of carbon nanotubes. Journal of Applied Physics, 2008, 103, 1-16.Google Scholar

  • [16] Wong, E.W.; Sheehan, P. E.; Lieber, C. M. Nanobeam mechanics: elasticity, strength and toughness of nanorods and nanotubes. Science, 1997, 277, 1971-1975.Google Scholar

  • [17] Arash, B.; Wang, Q. A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Computational Materials Science, 2012, 51, 303-313.Google Scholar

  • [18] Murmu, T.; Pradhan, S. C. Thermal effects on the stability of embedded carbon nanotubes. ComputationalMaterials Science, 2010, 47, 721-726.Google Scholar

  • [19] Pradhan, S. C.; Murmu, T. Buckling of single layer graphene sheet based on nonlocal elasticity and higher order shear deformation theory. Physics Letters A, 2010, 373, 4182-4188.Web of ScienceGoogle Scholar

  • [20] Bachtold, A.; Hadley, P.; Nakanihi, T.; Dekker, C. Logic circuits with carbon nanotube transistors, Science, 2001, 294, 1317-1320.Google Scholar

  • [21] Kiani, K. A. meshless approach for free transverse vibration of embedded single-walled nanotubes with arbitrary boundary conditions accounting for nonlocal effect.Int J Mech Sci., 2010, 52, 1343-1356.CrossrefWeb of ScienceGoogle Scholar

  • [22] Ece, M. C.; Aydogdu, M. Nonlocal elasticity effect on vibration of in-plane loaded double-walled carbon nano-tubes. Acta Mech., 2007 190, 185-195.Web of ScienceGoogle Scholar

  • [23] Simsek, M. Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory, Physica-E Low-dimensional Systems and Nanostructures, 2010, 43, 182-191.CrossrefGoogle Scholar

  • [24] Civalek, O.; Demir, C.; Akgöz, B. Free vibration and bending analyses of cantilever microtubules based on nonlocal continuum model, Mathematical and Computational Applications, 2010, 15, 289-298.Google Scholar

  • [25] Demir, C.; Civalek, O.; Akgöz, B. Free vibration analysis of carbon nanotubes based on shear deformable beam theory by discrete singular convolution Technique, Mathematical and Computational Applications, 2010, 15, 57-65.Google Scholar

  • [26] Aydogdu, M. Axial vibration of the nanorods with the nonlocal continuum rod model. Physica-E Low-dimensional Systems and Nanostructures, 2009, 41, 861-864.CrossrefGoogle Scholar

  • [27] Filiz, S.; Aydogdu. M. Axial vibration of carbon nanotube heterojunctions using nonlocal elasticity. Computational Materials Science, 2010, 49, 619-627.Web of ScienceGoogle Scholar

  • [28] Yang, F.; Chong, A. C. M.; Lam, D. C.; Tong, P. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, 2002, 39,2731-2743.Google Scholar

  • [29] Tornabene, F.: Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution. Computer Methods in Applied Mechanics and Engineering, 2009, 198, pp. 2911-2935Web of ScienceGoogle Scholar

  • [30] Tornabene, F., Viola, E.: Free vibration analysis of functionally graded panels and shells of revolutionMeccanica, 2009, 44, pp. 255-281Google Scholar

  • [31] Tornabene, F., Fantuzzi,N., Bacciocchi, M. Reddy J.N.: An Equivalent Layer-Wise Approach for the Free Vibration Analysis of Thick and Thin Laminated Sandwich Shells Applied Sciences, 2017, 7(17), pp. 1-34Web of ScienceGoogle Scholar

  • [32] Tornabene, F., Fantuzzi, N., Bacciocchi, M., Viola, E. and Reddy J.N.: A Numerical Investigation on the Natural Frequencies of FGMSandwich Shells with Variable Thickness by the Local Generalized Differential Quadrature Method Applied Sciences, 2017, 7(131), pp. 1-39Google Scholar

  • [33] Park, S. K.; Gao, X. L. Bernoulli-Euler beam model based on a modified couple stress theory. Journal Micromechanics Microengineering, 2006, 16, 2355-2359.Google Scholar

  • [34] Ma, H. M.; Gao, X. L.; Reddy, J. N. A microstructure dependent Timoshenko beam model based on a modified couple stress theory. Journal of the Mechanics and Physics of Solids, 2008, 56, 3379-3391 2008.CrossrefGoogle Scholar

  • [35] Simsek, M. Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory, International Journal of Engineering Science, 2010, 48, 1721-1732.Web of ScienceCrossrefGoogle Scholar

  • [36] Yayli, M. Ö. Free vibration behavior of a gradient elastic beam with varying cross section, Shock and Vibration, 2014.CrossrefGoogle Scholar

  • [37] Yayli, M. Ö. A compact analytical method for vibration of microsized beams with different boundary conditions, Mechanics of Advanced Materials and Structures, 2016, (just-accepted), 1-36.Google Scholar

  • [38] Papargyri-Beskou, S.; Tsepoura, K. G.; Polyzos, D.; Beskos, D. E. Bending and stability analysis of gradient elastic beams, International Journal of Solids and Structures,, 2003, 40, 385-400 2003.Google Scholar

  • [39] Artan, R.; Toksoz, A. Stability analysis of gradient elastic beams by the method of initial value, Arch. Appl. Mech, 2011, 18, 347-351.Web of ScienceGoogle Scholar

  • [40] Yayli, M. O., Stability analysis of gradient elastic microbeams with arbitrary boundary conditions. Journal of Mechanical Science and Technology, 2015, 29, 3373-3380.Google Scholar

About the article

Received: 2018-04-02

Accepted: 2018-04-20

Published Online: 2019-01-18

Published in Print: 2019-01-01


Citation Information: Curved and Layered Structures, Volume 6, Issue 1, Pages 1–10, ISSN (Online) 2353-7396, DOI: https://doi.org/10.1515/cls-2019-0001.

Export Citation

© by Mustafa Özgür Yayli, published by De Gruyter. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in