Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Communications in Mathematics

Editor-in-Chief: Rossi, Olga

2 Issues per year


Mathematical Citation Quotient (MCQ) 2016: 0.28

Open Access
Online
ISSN
2336-1298
See all formats and pricing
More options …

Integrals of logarithmic and hypergeometric functions

Anthony Sofo
Published Online: 2016-08-20 | DOI: https://doi.org/10.1515/cm-2016-0002

Abstract

Integrals of logarithmic and hypergeometric functions are intrinsically connected with Euler sums. In this paper we explore many relations and explicitly derive closed form representations of integrals of logarithmic, hypergeometric functions and the Lerch phi transcendent in terms of zeta functions and sums of alternating harmonic numbers.

Keywords: Logarithm function; Hypergeometric functions; Integral representation; Lerch transcendent function; Alternating harmonic numbers; Combinatorial series identities; Summation formulas; Partial fraction approach; Binomial coeficients

References

  • [1] V. Adamchik, H. M. Srivastava: Some series of the zeta and related functions. Analysis 18 (2) (1998) 131-144.CrossrefGoogle Scholar

  • [2] J. M. Borwein, I. J. Zucker, J. Boersma: The evaluation of character Euler double sums. Ramanujan J. 15 (2008) 377-405.CrossrefWeb of ScienceGoogle Scholar

  • [3] J. Choi: Log-Sine and Log-Cosine Integrals. Honam Mathematical J 35 (2) (2013) 137-146.Google Scholar

  • [4] J. Choi, D. Cvijović: Values of the polygamma functions at rational arguments. J. Phys. A: Math. Theor. 40 (50) (2007) 15019{15028. Corrigendum, ibidem, 43 (2010), 239801 (1p).Google Scholar

  • [5] J. Choi: Finite summation formulas involving binomial coeficients, harmonic numbers and generalized harmonic numbers. J. Inequal. Appl. 49 (2013) 1-11.Google Scholar

  • [6] J. Choi, H. M. Srivastava: Some summation formulas involving harmonic numbers and generalized harmonic numbers. Math. Comput. Modelling. 54 (2011) 2220-2234.CrossrefWeb of ScienceGoogle Scholar

  • [7] W. Chu: Summation formulae involving harmonic numbers. Filomat 26 (1) (2012) 143-152.Web of ScienceCrossrefGoogle Scholar

  • [8] O. Ciaurri, L. M. Navas, F. J. Ruiz, J. L. Varano: A simple computation of _(2k). Amer. Math. Monthly. 122 (5) (2015) 444-451.CrossrefGoogle Scholar

  • [9] M. W. Coffey, N. Lubbers: On generalized harmonic number sums. Appl. Math. Comput. 217 (2010) 689-698.Web of ScienceGoogle Scholar

  • [10] G. Dattoli, H. M. Srivastava: A note on harmonic numbers, umbral calculus and generating functions. Appl. Math. Lett. 21 (7) (2008) 686-693.CrossrefWeb of ScienceGoogle Scholar

  • [11] A. Devoto, D. W. Duke: Table of integrals and formulae for Feynman diagram calculation. La Rivista del Nuovo Cimento 7 (6) (1984) 1-39.CrossrefGoogle Scholar

  • [12] P. Flajolet, B. Salvy: Euler sums and contour integral representations. Exp. Math. 7 (1) (1998) 15-35.CrossrefGoogle Scholar

  • [13] P. Freitas: Integrals of polylogarithmic functions, recurrence relations and associated Euler sums. Math. Comp. 74 (251) (2005) 1425-1440.CrossrefGoogle Scholar

  • [14] K. Kölbig: The polygamma function (x) for x = 1=4 and x = 3=4. J. Comput. Appl. Math. 75 (1996) 43-46.CrossrefGoogle Scholar

  • [15] H. Liu, W. Wang: Harmonic number identities via hypergeometric series and Bell polynomials. Integral Transforms Spec. Funct. 23 (2012) 49-68.Google Scholar

  • [16] I Mező: Nonlinear Euler sums. Paci_c J. Math. 272 (1) (2014) 201-226.Google Scholar

  • [17] R. Sitaramachandrarao: A formula of S. Ramanujan. J. Number Theory 25 (1987) 1-19.CrossrefGoogle Scholar

  • [18] A. Sofo: Computational Techniques for the Summation of Series. Kluwer Academic/Plenum Publishers, New York (2003).Google Scholar

  • [19] A. Sofo: Integral identities for sums. Math. Commun. 13 (2) (2008) 303-309.Google Scholar

  • [20] A. Sofo: Sums of derivatives of binomial coefficients. Adv. in Appl. Math. 42 (2009) 123-134.CrossrefWeb of ScienceGoogle Scholar

  • [21] A. Sofo: Integral forms associated with harmonic numbers. Appl. Math. Comput. 207 (2) (2009) 365-372.Web of ScienceGoogle Scholar

  • [22] A. Sofo, H. M. Srivastava: Identities for the harmonic numbers and binomial coeffcients. Ramanujan J. 25 (1) (2011) 93{113.CrossrefGoogle Scholar

  • [23] A. Sofo: Summation formula involving harmonic numbers. Anal. Math. 37 (1) (2011) 51-64.CrossrefWeb of ScienceGoogle Scholar

  • [24] A. Sofo: Quadratic alternating harmonic number sums. J. Number Theory 154 (2015) 144-159.Web of ScienceCrossrefGoogle Scholar

  • [25] H. M. Srivastava, J. Choi: Series Associated with the Zeta and Related Functions. Kluwer Academic Publishers, London (2001).Google Scholar

  • [26] H. M. Srivastava, J. Choi: Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier Science Publishers, Amsterdam, London and New York (2012).Google Scholar

  • [27] W. Wang, C. Jia: Harmonic number identities via the Newton-Andrews method. Ramanujan J. 35 (2) (2014) 263-285.CrossrefWeb of ScienceGoogle Scholar

  • [28] C. Wei, D. Gong: The derivative operator and harmonic number identities. Ramanujan J. 34 (3) (2014) 361-371. Web of ScienceCrossrefGoogle Scholar

  • [29] T. C. Wu, S. T. Tu, H. M. Srivastava: Some combinatorial series identities associated with the digamma function and harmonic numbers. Appl. Math. Lett. 13 (3) (2000) 101-106.CrossrefGoogle Scholar

  • [30] D. Y. Zheng: Further summation formulae related to generalized harmonic numbers. J. Math. Anal. Appl. 335 (1) (2007) 692-706. Google Scholar

About the article

Received: 2015-09-14

Accepted: 2016-05-10

Published Online: 2016-08-20

Published in Print: 2016-08-01


Citation Information: Communications in Mathematics, ISSN (Online) 2336-1298, DOI: https://doi.org/10.1515/cm-2016-0002.

Export Citation

© 2016. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in