Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Communications in Mathematics

Editor-in-Chief: Rossi, Olga

2 Issues per year


Mathematical Citation Quotient (MCQ) 2015: 0.17

Open Access
Online
ISSN
2336-1298
See all formats and pricing
In This Section

Variations by generalized symmetries of local Noether strong currents equivalent to global canonical Noether currents

Marcella Palese
  • Corresponding author
  • Department of Mathematics, University of Torino, via C. Alberto 10, I-10123 Torino, Italy
  • Email:
Published Online: 2016-12-22 | DOI: https://doi.org/10.1515/cm-2016-0009

Abstract

We will pose the inverse problem question within the Krupka variational sequence framework. In particular, the interplay of inverse problems with symmetry and invariance properties will be exploited considering that the cohomology class of the variational Lie derivative of an equivalence class of forms, closed in the variational sequence, is trivial. We will focalize on the case of symmetries of globally defined field equations which are only locally variational and prove that variations of local Noether strong currents are variationally equivalent to global canonical Noether currents. Variations, taken to be generalized symmetries and also belonging to the kernel of the second variational derivative of the local problem, generate canonical Noether currents - associated with variations of local Lagrangians - which in particular turn out to be conserved along any section. We also characterize the variation of the canonical Noether currents associated with a local variational problem.

Keywords: fibered manifold; jet space; Lagrangian formalism; variational sequence; second variational derivative. cohomology; symmetry; conservation law

References

  • [1] G. Allemandi, M. Francaviglia, M. Raiteri: Covariant charges in Chern-Simons AdS3 gravity. Classical Quantum Gravity 20 (3) (2003) 483-506.Google Scholar

  • [2] I. M. Anderson, T. Duchamp: On the existence of global variational principles. Amer. Math. J. 102 (1980) 781-868.CrossrefGoogle Scholar

  • [3] D. Bashkirov, G. Giachetta, L. Mangiarotti, G. Sardanashvily: Noether's second theorem for BRST symmetries. J. Math. Phys. 46 (5) (2005). 053517, 23 pp.Google Scholar

  • [4] D. Bashkirov, G. Giachetta, L. Mangiarotti, G. Sardanashvily: Noether's second theorem in a general setting reducible gauge theories. J. Phys. A38 (2005) 5329-5344.Google Scholar

  • [5] D. Bashkirov, G. Giachetta, L. Mangiarotti, G. Sardanashvily: The antifield Koszul-Tate complex of reducible Noether identities. J. Math. Phys. 46 (10) (2005). 103513, 19 pp.Google Scholar

  • [6] E. Bessel-Hagen: Über die Erhaltungssätze der Elektrodynamik. Math. Ann. 84 (1921) 258-276.CrossrefGoogle Scholar

  • [7] A. Borowiec, M. Ferraris, M. Francaviglia, M. Palese: Conservation laws for non-global Lagrangians. Univ. Iagel. Acta Math. 41 (2003) 319-331.Google Scholar

  • [8] J. Brajerèík, D. Krupka: Variational principles for locally variational forms. J. Math. Phys. 46 (5) (2005). 052903, 15 ppGoogle Scholar

  • [9] F. Cattafi, M. Palese, E. Winterroth: Variational derivatives in locally Lagrangian field theories and Noether-Bessel-Hagen currents. Int. J. Geom. Methods Mod. Phys. 13 (8) (2016). 1650067Google Scholar

  • [10] P. Dedecker, W. M. Tulczyjew: Spectral sequences and the inverse problem of the calculus of variations. In: Lecture Notes in Mathematics. Springer-Verlag (1980) 498-503.Google Scholar

  • [11] D. J. Eck: Gauge-natural bundles and generalized gauge theories. Mem. Amer. Math. Soc. 247 (1981) 1-48.Google Scholar

  • [12] M. Ferraris, M. Francaviglia, M. Raiteri: Conserved Quantities from the Equations of Motion (with applications to natural and gauge natural theories of gravitation). Class.Quant.Grav. 20 (2003) 4043-4066.CrossrefGoogle Scholar

  • [13] M. Ferraris, M. Palese, E. Winterroth: Local variational problems and conservation laws. Diff. Geom. Appl 29 (2011) S80-S85.CrossrefGoogle Scholar

  • [14] M. Francaviglia, M. Palese, R. Vitolo: Symmetries in finite order variational sequences. Czech. Math. J. 52 (1) (2002) 197-213.CrossrefGoogle Scholar

  • [15] M. Francaviglia, M. Palese, R. Vitolo: The Hessian and Jacobi Morphisms for Higher Order Calculus of Variations. Diff. Geom. Appl. 22 (1) (2005) 105-120.CrossrefGoogle Scholar

  • [16] M. Francaviglia, M. Palese, E. Winterroth: Locally variational invariant field equations and global currents: Chern-Simons theories. Commun. Math. 20 (1) (2012) 13-22.Google Scholar

  • [17] M. Francaviglia, M. Palese, E. Winterroth: Variationally equivalent problems and variations of Noether currents. Int. J. Geom. Meth. Mod. Phys. 10 (1) (2013). 1220024Google Scholar

  • [18] M. Francaviglia, M. Palese, E. Winterroth: Cohomological obstructions in locally variational field theories. Jour. Phys. Conf. Series 474 (2013). 012017Google Scholar

  • [19] G. Giachetta, L. Mangiarotti, G. Sardanashvily: Lagrangian supersymmetries depending on derivatives. Global analysis and cohomology. Comm. Math. Phys. 259 (1) (2005) 103-128.CrossrefGoogle Scholar

  • [20] Y. Kosmann-Schwarzbach: The Noether Theorems; translated from French by Bertram E. Schwarzbach. Sources and Studies in the History of Mathematics and Physical Sciences, Springer, New York (2011).Google Scholar

  • [21] D. Krupka: Some Geometric Aspects of Variational Problems in Fibred Manifolds. Folia Fac. Sci. Nat. UJEP Brunensis 14 (1973) 1-65.Google Scholar

  • [22] D. Krupka: Variational Sequences on Finite Order Jet Spaces. In: J. Janyška and D. Krupka: Differential Geometry and its Applications, Proc. Conf., Brno, Czechoslovakia. World Scientific (1989) 236-254.Google Scholar

  • [23] D. Krupka, O. Krupková, G. Prince, W. Sarlet: Contact symmetries of the Helmholtz form. Differential Geom. Appl. 25 (5) (2007) 518-542.Google Scholar

  • [24] E. Noether: Invariante Variationsprobleme. Nachr. Ges. Wiss. Gött., Math. Phys. Kl. II (1918) 235-257.Google Scholar

  • [25] M. Palese, O. Rossi, E. Winterroth, J. Musilová: Variational sequences, representation sequences and applications in physics. SIGMA 12 (2016). 045, 45 pagesGoogle Scholar

  • [26] M. Palese, E. Winterroth: Covariant gauge-natural conservation laws. Rep. Math. Phys. 54 (3) (2004) 349-364.CrossrefGoogle Scholar

  • [27] M. Palese, E. Winterroth: Global Generalized Bianchi Identities for Invariant Variational Problems on Gauge-natural Bundles. Arch. Math. (Brno) 41 (3) (2005) 289-310.Google Scholar

  • [28] M. Palese, E. Winterroth: Noether Theorems and Reality of Motion. In: Proc. Marcel Grossmann Meeting 2015. World Scientific (2016). to appearGoogle Scholar

  • [29] M. Palese, E. Winterroth: Variational Lie derivative and cohomology classes. AIP Conf. Proc. 1360 (2011) 106-112.Google Scholar

  • [30] M. Palese, E. Winterroth: Topological obstructions in Lagrangian field theories, with an application to 3D Chern-Simons gauge theory. preprint submittedGoogle Scholar

  • [31] G. Sardanashvily: Noether conservation laws issue from the gauge invariance of an Euler-Lagrange operator, but not a Lagrangian. arXiv:math-ph/0302012 (2003).Google Scholar

  • [32] G. Sardanashvily: Noether identities of a differential operator. The Koszul-Tate complex. Int. J. Geom. Methods Mod. Phys. 2 (5) (2005) 873-886.Google Scholar

  • [33] G. Sardanashvily: Noether's theorems. Applications in mechanics and field theory. Atlantis Press, Paris (2016). xvii+297 pp.Google Scholar

  • [34] F. Takens: A global version of the inverse problem of the calculus of variations. J. Diff. Geom. 14 (1979) 543-562.Google Scholar

  • [35] W. M. Tulczyjew: The Lagrange Complex. Bull. Soc. Math. France 105 (1977) 419-431.Google Scholar

  • [36] A. M. Vinogradov: On the algebro-geometric foundations of Lagrangian field theory. Soviet Math. Dokl. 18 (1977) 1200-1204. Google Scholar

About the article

Received: 2016-11-15

Accepted: 2016-12-10

Published Online: 2016-12-22

Published in Print: 2016-12-01


Citation Information: Communications in Mathematics, ISSN (Online) 2336-1298, DOI: https://doi.org/10.1515/cm-2016-0009.

Export Citation

© 2016. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in