[1] G. Allemandi, M. Francaviglia, M. Raiteri: Covariant charges in Chern-Simons AdS3 gravity. Classical Quantum Gravity 20 (3) (2003) 483-506.Google Scholar

[2] I. M. Anderson, T. Duchamp: On the existence of global variational principles. Amer. Math. J. 102 (1980) 781-868.CrossrefGoogle Scholar

[3] D. Bashkirov, G. Giachetta, L. Mangiarotti, G. Sardanashvily: Noether's second theorem for BRST symmetries. J. Math. Phys. 46 (5) (2005). 053517, 23 pp.Google Scholar

[4] D. Bashkirov, G. Giachetta, L. Mangiarotti, G. Sardanashvily: Noether's second theorem in a general setting reducible gauge theories. J. Phys. A38 (2005) 5329-5344.Google Scholar

[5] D. Bashkirov, G. Giachetta, L. Mangiarotti, G. Sardanashvily: The antifield Koszul-Tate complex of reducible Noether identities. J. Math. Phys. 46 (10) (2005). 103513, 19 pp.Google Scholar

[6] E. Bessel-Hagen: Über die Erhaltungssätze der Elektrodynamik. Math. Ann. 84 (1921) 258-276.CrossrefGoogle Scholar

[7] A. Borowiec, M. Ferraris, M. Francaviglia, M. Palese: Conservation laws for non-global Lagrangians. Univ. Iagel. Acta Math. 41 (2003) 319-331.Google Scholar

[8] J. Brajerèík, D. Krupka: Variational principles for locally variational forms. J. Math. Phys. 46 (5) (2005). 052903, 15 ppGoogle Scholar

[9] F. Cattafi, M. Palese, E. Winterroth: Variational derivatives in locally Lagrangian field theories and Noether-Bessel-Hagen currents. Int. J. Geom. Methods Mod. Phys. 13 (8) (2016). 1650067Google Scholar

[10] P. Dedecker, W. M. Tulczyjew: Spectral sequences and the inverse problem of the calculus of variations. In: Lecture Notes in Mathematics. Springer-Verlag (1980) 498-503.Google Scholar

[11] D. J. Eck: Gauge-natural bundles and generalized gauge theories. Mem. Amer. Math. Soc. 247 (1981) 1-48.Google Scholar

[12] M. Ferraris, M. Francaviglia, M. Raiteri: Conserved Quantities from the Equations of Motion (with applications to natural and gauge natural theories of gravitation). Class.Quant.Grav. 20 (2003) 4043-4066.CrossrefGoogle Scholar

[13] M. Ferraris, M. Palese, E. Winterroth: Local variational problems and conservation laws. Diff. Geom. Appl 29 (2011) S80-S85.CrossrefGoogle Scholar

[14] M. Francaviglia, M. Palese, R. Vitolo: Symmetries in finite order variational sequences. Czech. Math. J. 52 (1) (2002) 197-213.CrossrefGoogle Scholar

[15] M. Francaviglia, M. Palese, R. Vitolo: The Hessian and Jacobi Morphisms for Higher Order Calculus of Variations. Diff. Geom. Appl. 22 (1) (2005) 105-120.CrossrefGoogle Scholar

[16] M. Francaviglia, M. Palese, E. Winterroth: Locally variational invariant field equations and global currents: Chern-Simons theories. Commun. Math. 20 (1) (2012) 13-22.Google Scholar

[17] M. Francaviglia, M. Palese, E. Winterroth: Variationally equivalent problems and variations of Noether currents. Int. J. Geom. Meth. Mod. Phys. 10 (1) (2013). 1220024Google Scholar

[18] M. Francaviglia, M. Palese, E. Winterroth: Cohomological obstructions in locally variational field theories. Jour. Phys. Conf. Series 474 (2013). 012017Google Scholar

[19] G. Giachetta, L. Mangiarotti, G. Sardanashvily: Lagrangian supersymmetries depending on derivatives. Global analysis and cohomology. Comm. Math. Phys. 259 (1) (2005) 103-128.CrossrefGoogle Scholar

[20] Y. Kosmann-Schwarzbach: The Noether Theorems; translated from French by Bertram E. Schwarzbach. Sources and Studies in the History of Mathematics and Physical Sciences, Springer, New York (2011).Google Scholar

[21] D. Krupka: Some Geometric Aspects of Variational Problems in Fibred Manifolds. Folia Fac. Sci. Nat. UJEP Brunensis 14 (1973) 1-65.Google Scholar

[22] D. Krupka: Variational Sequences on Finite Order Jet Spaces. In: J. Janyška and D. Krupka: Differential Geometry and its Applications, Proc. Conf., Brno, Czechoslovakia. World Scientific (1989) 236-254.Google Scholar

[23] D. Krupka, O. Krupková, G. Prince, W. Sarlet: Contact symmetries of the Helmholtz form. Differential Geom. Appl. 25 (5) (2007) 518-542.Google Scholar

[24] E. Noether: Invariante Variationsprobleme. Nachr. Ges. Wiss. Gött., Math. Phys. Kl. II (1918) 235-257.Google Scholar

[25] M. Palese, O. Rossi, E. Winterroth, J. Musilová: Variational sequences, representation sequences and applications in physics. SIGMA 12 (2016). 045, 45 pagesGoogle Scholar

[26] M. Palese, E. Winterroth: Covariant gauge-natural conservation laws. Rep. Math. Phys. 54 (3) (2004) 349-364.CrossrefGoogle Scholar

[27] M. Palese, E. Winterroth: Global Generalized Bianchi Identities for Invariant Variational Problems on Gauge-natural Bundles. Arch. Math. (Brno) 41 (3) (2005) 289-310.Google Scholar

[28] M. Palese, E. Winterroth: Noether Theorems and Reality of Motion. In: Proc. Marcel Grossmann Meeting 2015. World Scientific (2016). to appearGoogle Scholar

[29] M. Palese, E. Winterroth: Variational Lie derivative and cohomology classes. AIP Conf. Proc. 1360 (2011) 106-112.Google Scholar

[30] M. Palese, E. Winterroth: Topological obstructions in Lagrangian field theories, with an application to 3D Chern-Simons gauge theory. preprint submittedGoogle Scholar

[31] G. Sardanashvily: Noether conservation laws issue from the gauge invariance of an Euler-Lagrange operator, but not a Lagrangian. arXiv:math-ph/0302012 (2003).Google Scholar

[32] G. Sardanashvily: Noether identities of a differential operator. The Koszul-Tate complex. Int. J. Geom. Methods Mod. Phys. 2 (5) (2005) 873-886.Google Scholar

[33] G. Sardanashvily: Noether's theorems. Applications in mechanics and field theory. Atlantis Press, Paris (2016). xvii+297 pp.Google Scholar

[34] F. Takens: A global version of the inverse problem of the calculus of variations. J. Diff. Geom. 14 (1979) 543-562.Google Scholar

[35] W. M. Tulczyjew: The Lagrange Complex. Bull. Soc. Math. France 105 (1977) 419-431.Google Scholar

[36] A. M. Vinogradov: On the algebro-geometric foundations of Lagrangian field theory. Soviet Math. Dokl. 18 (1977) 1200-1204. Google Scholar

## Comments (0)