Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Communications in Mathematics

Editor-in-Chief: Rossi, Olga

2 Issues per year

Mathematical Citation Quotient (MCQ) 2016: 0.28

Open Access
See all formats and pricing
More options …

Geometry of the free-sliding Bernoulli beam

Giovanni Moreno
  • Corresponding author
  • Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-656 Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ monika.stypa@accenture.com Monika Ewa Stypa
Published Online: 2016-12-22 | DOI: https://doi.org/10.1515/cm-2016-0011


If a variational problem comes with no boundary conditions prescribed beforehand, and yet these arise as a consequence of the variation process itself, we speak of the free boundary values variational problem. Such is, for instance, the problem of finding the shortest curve whose endpoints can slide along two prescribed curves. There exists a rigorous geometric way to formulate this sort of problems on smooth manifolds with boundary, which we review here in a friendly self-contained way. As an application, we study the particular free boundary values variational problem of the free-sliding Bernoulli beam.

Keywords: Global Analysis; Calculus of Variations; Free Boundary Problems; Jet Spaces; Bernoulli Beam


  • [1] I. M. Anderson and T. Duchamp: On the existence of global variational principles. Amer. J. Math. 102 (5) (1980) 781-868. ISSN 0002-9327. DOI 10.2307/2374195CrossrefGoogle Scholar

  • [2] A. V. Bocharov, V. N. Chetverikov, S. V. Duzhin, N. G. Khor'kova, I. S. Krasil'shchik, A. V. Samokhin, Yu. N. Torkhov, A. M. Verbovetsky, A. M. Vinogradov: Symmetries and conservation laws for differential equations of mathematical physics. American Mathematical Society, Providence, RI (1999). ISBN 0-8218-0958-X. Edited and with a preface by Krasil'shchik and Vinogradov, translated from 1997 Russian original by Verbovetsky and Krasil'shchikGoogle Scholar

  • [3] P. Dedecker: Calcul des variations, formes différentielles et champs géodésiques. In: Géométrie différentielle. Colloques Internationaux du Centre National de la Recherche Scientifique, Strasbourg. Centre National de la Recherche Scientifique, Paris (1953) 17-34.Google Scholar

  • [4] I. M. Gel'fand and L. A. Dikiĭ: The calculus of jets and nonlinear Hamiltonian systems. Funkcional. Anal. i Priložen. 12 (2) (1978) 8-23. ISSN 0374-1990Google Scholar

  • [5] M. Giaquinta, S. Hildebrandt: Calculus of variations. I. Springer-Verlag, Berlin (1996). ISBN 3-540-50625-X. The Lagrangian formalismGoogle Scholar

  • [6] M. Janet: Leçons sur les Systèmes d'Équations aux Dérivées Partielles. Gauthier-Villars (1929).Google Scholar

  • [7] D. Krupka: Of the structure of the Euler mapping. Arch. Math. 10 (1) (1974) 55-61. ISSN 0044-8753Google Scholar

  • [8] D. Krupka, G. Moreno, Z. Urban, J. Volná: On a bicomplex induced by the variational sequence. Int. J. Geom. Methods Mod. Phys. 15 (5) (2015). 1550057. ISSN 0219-8878. DOI 10.1142/S0219887815500577CrossrefGoogle Scholar

  • [9] C. Lánczos: The variational principles of mechanics. University of Toronto Press, Toronto, Ont. (1970). Fourth Ed.Google Scholar

  • [10] A. E. H. Love: A treatise on the Mathematical Theory of Elasticity. Dover Publications, New York (1944). Fourth Ed.Google Scholar

  • [11] G. Moreno: Condizioni di trasversalitá nel calcolo secondario. PhD thesis, University of Naples \Federico II" (2007)Google Scholar

  • [12] G. Moreno: A C-spectral sequence associated with free boundary variational problems. In: Geometry, integrability and quantization. Avangard Prima, Sofia (2010) 146-156.Google Scholar

  • [13] G. Moreno: The geometry of the space of cauchy data of nonlinear pdes. Central European Journal of Mathematics 11 (11) (2013) 1960-1981. DOI 10.2478/s11533-013-0292-yCrossrefGoogle Scholar

  • [14] G. Moreno, M. E. Stypa: Natural boundary conditions in geometric calculus of variations. Math. Slovaca 65 (6) (2015) 1531-1556. ISSN 0139-9918. DOI 10.1515/ms-2015-0105CrossrefGoogle Scholar

  • [15] G. A. Sardanashvily: Gauge theory in jet manifolds. Hadronic Press Inc., Palm Harbor, FL (1993). ISBN 0-911767-60-6.Google Scholar

  • [16] D. J. Saunders: The geometry of jet bundles. Cambridge University Press, Cambridge (1989). ISBN 0-521-36948-7. DOI 10.1017/CBO9780511526411Google Scholar

  • [17] F. Takens: Symmetries, conservation laws and variational principles. In: Lect. Notes Math.. Springer-Verlag (1977) 581-604.Google Scholar

  • [18] T. Tsujishita: On variation bicomplexes associated to differential equations. Osaka J. Math. 19 (2) (1982) 311-363. ISSN 0030-6126Google Scholar

  • [19] W. M. Tulczyjew: Sur la différentielle de Lagrange. C. R. Acad. Sci. Paris Sér. A 280 (1975) 1295-1298.Google Scholar

  • [20] B. van Brunt: The calculus of variations. Springer-Verlag, New York (2004). ISBN 0-387-40247-0Google Scholar

  • [21] A. M. Vinogradov: The C-spectral sequence, Lagrangian formalism, and conservation laws. I. The linear theory. J. Math. Anal. Appl. 100 (1) (1984) 1-40. ISSN 0022-247XCrossrefGoogle Scholar

  • [22] A. M. Vinogradov: The C-spectral sequence, Lagrangian formalism, and conservation laws. II. The nonlinear theory. J. Math. Anal. Appl. 100 (1) (1984) 41-129. ISSN 0022-247XCrossrefGoogle Scholar

  • [23] A. M. Vinogradov, G. Moreno: Domains in infinite jet spaces: the C-spectral sequence. Dokl. Akad. Nauk 413 (2) (2007) 154-157. ISSN 0869-5652. DOI 10.1134/S1064562407020081 CrossrefGoogle Scholar

About the article

Received: 2016-11-04

Accepted: 2016-12-06

Published Online: 2016-12-22

Published in Print: 2016-12-01

Citation Information: Communications in Mathematics, Volume 24, Issue 2, Pages 153–171, ISSN (Online) 2336-1298, DOI: https://doi.org/10.1515/cm-2016-0011.

Export Citation

© 2016. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in