Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Communications in Mathematics

Editor-in-Chief: Rossi, Olga

2 Issues per year


Mathematical Citation Quotient (MCQ) 2016: 0.28

Open Access
Online
ISSN
2336-1298
See all formats and pricing
More options …

Existence of solutions for a coupled system with ∅-Laplacian operators and nonlinear coupled boundary conditions

Konan Charles Etienne Goli
  • Corresponding author
  • UFR Mathématiques et informatique, Université Félix Houphouet Boigny de Côte D'Ivoire, 22 BP 582 Abidjan 22, Côte D'Ivoire
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Assohoun Adjé
  • FR Mathématiques et informatique, Université Félix Houphouet Boigny de Côte D'Ivoire, 22 BP 582 Abidjan 22, Côte D'Ivoire
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-01-11 | DOI: https://doi.org/10.1515/cm-2017-0008

Abstract

We study the existence of solutions of the system submitted to nonlinear coupled boundary conditions on [0, T] where ∅1,2: (-a, a) → ℝ, with 0 < a < +∞, are two increasing homeomorphisms such that ∅1(0) = ∅2(0) = 0, and fi : [0, T] × ℝ4 → ℝ, i ∈{1, 2} are two L1-Carathéodory functions. Using some new conditions and Schauder fixed point Theorem, we obtain solvability result.

MSC 2010: 34B15

Keywords: ∅-Laplacian; L1-Carathéodory function; Schauder fixed-point Theorem

References

  • [1] N. A. Asif, I. Talib: Existence of Solutions to a Second Order Coupled System with Nonlinear Coupled Boundary Conditions. American Journal of Applied Mathematics, Special Issue: Proceedings of the 1st UMT National Conference on Pure and Applied Mathematics (1st UNCPAM 2015) 3 (3-1) (2015) 54-59.Google Scholar

  • [2] N. A. Asif, I. Talib, C. Tunc: Existence of solution for first-order coupled system with nonlinear coupled boundary conditions. Boundary Value Problems 2015 (1) (2015) 134.Google Scholar

  • [3] C. Bereanu, J. Mawhin: Nonhomogeneous boundary value problems for some nonlinear equations with singular ∅-Laplacian. J. Math. Anal. Appl. 352 (2009) 218-233.Web of ScienceGoogle Scholar

  • [4] P.G. Bergmann: Introduction to the Theory of Relativity. Dover Publications, New York (1976).Google Scholar

  • [5] H. Brezis, J. Mawhin: Periodic solutions of the forced relativistic pendulum. Differential Integral Equations 23 (2010) 801-810.Google Scholar

  • [6] D. Franco, D. O'Regan: Existence of solutions to second order problems with nonlinear boundary conditions. In: Proceedings of the Fourth International Conference on Dynamical Systems and Differential Equations. (2002) 273-280.Google Scholar

  • [7] D. Franco, D. O'Regan: A new upper and lower solutions approach for second order problems with nonlinear boundary conditions. Arch. Inequal. Appl. 1 (2003) 423-430.Google Scholar

  • [8] D. Franco, D. O'Regan, J. Perán: Fourth-order problems with nonlinear boundary conditions. Journal of Computational and Applied Mathematics 174 (2005) 315-327.Google Scholar

About the article

Received: 2016-04-24

Accepted: 2017-04-26

Published Online: 2018-01-11

Published in Print: 2017-12-20


Citation Information: Communications in Mathematics, Volume 25, Issue 2, Pages 79–87, ISSN (Online) 2336-1298, DOI: https://doi.org/10.1515/cm-2017-0008.

Export Citation

© 2018. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in