Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Computational Methods in Applied Mathematics

Editor-in-Chief: Carstensen, Carsten

Managing Editor: Matus, Piotr

IMPACT FACTOR 2018: 1.218
5-year IMPACT FACTOR: 1.411

CiteScore 2018: 1.42

SCImago Journal Rank (SJR) 2018: 0.947
Source Normalized Impact per Paper (SNIP) 2018: 0.939

Mathematical Citation Quotient (MCQ) 2018: 1.22

See all formats and pricing
More options …
Volume 11, Issue 3


An Introduction to Hierarchical (H-) Rank and TT-Rank of Tensors with Examples

Lars Grasedyck
Wolfgang Hackbusch


We review two similar concepts of hierarchical rank of tensors (which extend the matrix rank to higher order tensors): the TT-rank and the H-rank (hierarchical or H-Tucker rank). Based on this notion of rank, one can define a data-sparse representation of tensors involving O(dnk + dk^3) data for order d tensors with mode sizes n and rank k. Simple examples underline the differences and similarities between the different formats and ranks. Finally, we derive rank bounds for tensors in one of the formats based on the ranks in the other format.

Keywords: hierarchical tucker; tensor rank; tensor approximation; tensor train

About the article

Received: 2011-05-10

Revised: 2011-07-16

Accepted: 2011-08-20

Published in Print:

Citation Information: Computational Methods in Applied Mathematics Comput. Methods Appl. Math., Volume 11, Issue 3, Pages 291–304, ISSN (Online) 1609-9389, ISSN (Print) 1609-4840, DOI: https://doi.org/10.2478/cmam-2011-0016.

Export Citation

© Institute of Mathematics, NAS of Belarus. This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Lars Grasedyck, Daniel Kressner, and Christine Tobler
GAMM-Mitteilungen, 2013, Volume 36, Number 1, Page 53
Wolfgang Hackbusch
Acta Numerica, 2014, Volume 23, Page 651
Dmytro Pivovarov, Kai Willner, Paul Steinmann, Stephan Brumme, Michael Müller, Tarin Srisupattarawanit, Georg‐Peter Ostermeyer, Carla Henning, Tim Ricken, Steffen Kastian, Stefanie Reese, Dieter Moser, Lars Grasedyck, Jonas Biehler, Martin Pfaller, Wolfgang Wall, Thomas Kohlsche, Otto von Estorff, Robert Gruhlke, Martin Eigel, Max Ehre, Iason Papaioannou, Daniel Straub, and Sigrid Leyendecker
GAMM-Mitteilungen, 2019, Volume 42, Number 2, Page e201900011
Jiarong Shi, Xiuyun Zheng, and Wei Yang
Entropy, 2017, Volume 19, Number 8, Page 424
Markus Bachmayr, Reinhold Schneider, and André Uschmajew
Foundations of Computational Mathematics, 2016, Volume 16, Number 6, Page 1423
Hans De Sterck and Alexander Howse
SIAM Journal on Scientific Computing, 2016, Volume 38, Number 2, Page A997
Mikhail S. Litsarev and Ivan V. Oseledets
Journal of Computational Physics, 2016, Volume 305, Page 557
Weronika Buczyńska, Jarosław Buczyński, and Mateusz Michałek
Journal de Mathématiques Pures et Appliquées, 2015, Volume 104, Number 4, Page 749
André Uschmajew and Bart Vandereycken
Linear Algebra and its Applications, 2013, Volume 439, Number 1, Page 133
Szilárd Szalay, Max Pfeffer, Valentin Murg, Gergely Barcza, Frank Verstraete, Reinhold Schneider, and Örs Legeza
International Journal of Quantum Chemistry, 2015, Volume 115, Number 19, Page 1342
Jonas Ballani and Lars Grasedyck
SIAM Journal on Scientific Computing, 2014, Volume 36, Number 4, Page A1415

Comments (0)

Please log in or register to comment.
Log in