Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Computational Methods in Applied Mathematics

Editor-in-Chief: Carstensen, Carsten

Managing Editor: Matus, Piotr


IMPACT FACTOR 2017: 0.658

CiteScore 2017: 1.05

SCImago Journal Rank (SJR) 2017: 1.291
Source Normalized Impact per Paper (SNIP) 2017: 0.893

Mathematical Citation Quotient (MCQ) 2017: 0.76

Online
ISSN
1609-9389
See all formats and pricing
More options …
Volume 16, Issue 4

Issues

Optimal Control for the Thin Film Equation: Convergence of a Multi-Parameter Approach to Track State Constraints Avoiding Degeneracies

Markus Klein / Andreas Prohl
  • Corresponding author
  • Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10,72076 Tübingen, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-09-22 | DOI: https://doi.org/10.1515/cmam-2016-0025

Abstract

We consider an optimal control problem subject to the thin-film equation. The PDE constraint lacks well-posedness for general right-hand sides due to possible degeneracies; state constraints are used to circumvent this problematic issue and to ensure well-posedness. Necessary optimality conditions for the optimal control problem are then derived. A convergent multi-parameter regularization is considered which addresses both, the possibly degenerate term in the equation and the state constraint. Some computational studies are then reported which evidence the relevant role of the state constraint, and motivate proper scalings of involved regularization and numerical parameters.

Keywords: Thin-Film Equation; Optimality Conditions; Penalty Approach; Optimal Control of Degenerate Equation

MSC 2010: 35K55; 35K65; 93C20; 93C95; 76A20

References

  • [1]

    Abergel F. and Temam R., On some control problems in fluid mechanics, Theoret. Comput. Fluid Dyn. 1 (1990), no. 6, 303–325. Google Scholar

  • [2]

    Alibert J.-J. and Raymond J.-P., A Lagrange multiplier theorem for control problems with state constraints, Numer. Funct. Anal. Optim. 19 (1998), no. 7–8, 697–704. Google Scholar

  • [3]

    Becker J. and Grün G., The thin-film equation: Recent advances and some new perspectives, J. Phys. Condensed Matter 17 (2005), no. 9, 291–307. Google Scholar

  • [4]

    Becker J., Grün G., Lenz M. and Rumpf M., Numerical methods for fourth order nonlinear degenerate diffusion problems, Appl. Math. 47 (2002), no. 6, 517–543. Google Scholar

  • [5]

    Becker J., Grün G., Seemann R., Mantz H., Jacobs K., Mecke K. R. and Blossey R., Complex dewetting scenarios captured by thin-film models, Nat. Mater. 2 (2002), no. 1, 59–63. Google Scholar

  • [6]

    Bernis F. and Friedman A., Higher order nonlinear degenerate parabolic equations, J. Differential Equations 83 (1990), no. 1, 179–206. Google Scholar

  • [7]

    Bertozzi A. L., The mathematics of moving contact lines in thin liquid films, Notices Amer. Math. Soc. 45 (1998), no. 6, 689–697. Google Scholar

  • [8]

    Brenner S. C. and Scott L. R., The Mathematical Theory of Finite Element Methods, Texts Appl. Math. 15, Springer, New York, 1994. Google Scholar

  • [9]

    Bryson A. E. and Ho Y. C., Applied Optimal Control: Optimization, Estimation and Control, CRC Press, Boca Raton, 1975. Google Scholar

  • [10]

    bwGRiD, Member of the German D-Grid initiative, funded by the Ministry of Education and Research (Bundesministerium für Bildung und Forschung) and the Ministry for Science, Research and Arts Baden-Württemberg (Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg), technical report, Universities of Baden-Württemberg, 2007–2010, www.bw-grid.de.

  • [11]

    Clason C. and Kaltenbacher B., Avoiding degeneracy in the Westervelt equation by state constrained optimal control, Evol. Equ. Control Theory 2 (2013), no. 2, 281–300. Google Scholar

  • [12]

    Clason C. and Kaltenbacher B., On the use of state constraints in optimal control of singular PDEs, Systems Control Lett. 62 (2013), no. 1, 48–54. Google Scholar

  • [13]

    Clason C. and Kaltenbacher B., Optimal control of a singular PDE modeling transient MEMS with control or state constraints, J. Math. Anal. Appl. 410 (2014), no. 1, 455–468. Google Scholar

  • [14]

    Grün G., On the convergence of entropy consistent schemes for lubrication type equations in multiple space dimensions, Math. Comp. 72 (2003), no. 243, 1251–1279. Google Scholar

  • [15]

    Gunzburger M. D., Perspectives in Flow Control and Optimization, Adv. Des. Control 5, SIAM, Philadelphia, 2003. Google Scholar

  • [16]

    Herzog R. and Kunisch K., Algorithms for PDE-constrained optimization, GAMM-Mitt. 33 (2010), no. 2, 163–176. Google Scholar

  • [17]

    Hintermüller M. and Kunisch K., Feasible and noninterior path-following in constrained minimization with low multiplier regularity, SIAM J. Control Optim. 45 (2006), no. 4, 1198–1221. Google Scholar

  • [18]

    Hinze M., Pinnau R., Ulbrich M. and Ulbrich S., Optimization with PDE Constraints, Math. Model. Theory Appl. 23, Springer, New York, 2009. Google Scholar

  • [19]

    Kaltenbacher B. and Klibanov M. V., An inverse problem for a nonlinear parabolic equation with applications in population dynamics and magnetics, SIAM J. Math. Anal. 39 (2008), no. 6, 1863–1889. Google Scholar

  • [20]

    Oron A., Davis S. H. and Bankoff S. G., Long-scale evolution of thin liquid films, Rev. Mod. Phys. 69 (1997), no. 3, 931–980. Google Scholar

  • [21]

    Tröltzsch F. and Yousept I., A regularization method for the numerical solution of elliptic boundary control problems with pointwise state constraints, Comput. Optim. Appl. 42 (2009), no. 1, 43–66. Google Scholar

  • [22]

    Zhao X. and Liu C., Optimal control of a fourth-order parabolic equation modeling epitaxial thin film growth, Bull. Belg. Math. Soc. Simon Stevin 20 (2013), no. 3, 547–557. Google Scholar

About the article

Received: 2016-05-29

Revised: 2016-06-23

Accepted: 2016-08-03

Published Online: 2016-09-22

Published in Print: 2016-10-01


Funding Source: Deutsche Forschungsgemeinschaft

Award identifier / Grant number: SPP 1253

The work supported by a DFG grant within the Priority Program SPP 1253 (Optimization with Partial Differential Equations). This work was performed on the computational resource bwUniCluster funded by the Ministry of Science, Research and Arts and the Universities of the State of Baden-Württemberg, Germany, within the framework program bwHPC; cf. [bwGRiD, Member of the German D-Grid initiative, funded by the Ministry of Education and Research (Bundesministerium für Bildung und Forschung) and the Ministry for Science, Research and Arts Baden-Württemberg (Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg), technical report, Universities of Baden-Württemberg, 2007–2010, www.bw-grid.de].


Citation Information: Computational Methods in Applied Mathematics, Volume 16, Issue 4, Pages 685–702, ISSN (Online) 1609-9389, ISSN (Print) 1609-4840, DOI: https://doi.org/10.1515/cmam-2016-0025.

Export Citation

© 2016 by De Gruyter.Get Permission

Comments (0)

Please log in or register to comment.
Log in