[1]

P. Benner, S. Dolgov, V. Khoromskaia and B. N. Khoromskij,
Fast iterative solution of the Bethe-Salpeter eigenvalue problem using low-rank and QTT tensor approximation,
J. Comput. Phys. 334 (2017), 221–239.
Google Scholar

[2]

P. Benner, H. Faßbender and C. Yang,
Some remarks on the complex $J$-symmetric eigenproblem,
preprint (2015), http://www2.mpi-magdeburg.mpg.de/preprints/2015/12/.

[3]

P. Benner, V. Khoromskaia and B. N. Khoromskij,
A reduced basis approach for calculation of the Bethe–Salpeter excitation energies using low-rank tensor factorizations,
Mol. Phys. 114 (2016), no. 7–8, 1148–1161.
Google Scholar

[4]

P. Benner, V. Mehrmann and H. Xu,
A new method for computing the stable invariant subspace of a real Hamiltonian matrix,
J. Comput. Appl. Math. 86 (1997), 17–43.
CrossrefGoogle Scholar

[5]

C. Bertoglio and B. N. Khoromskij,
Low-rank quadrature-based tensor approximation of the Galerkin projected Newton/Yukawa kernels,
Comput. Phys. Commun. 183 (2012), no. 4, 904–912.
Google Scholar

[6]

A. Bloch,
Les théorèmes de M. Valiron sur les fonctions entières et la théorie de l’uniformisation,
Ann. Fac. Sci. Toulouse Math. 17 (1925), no. 3, 1–22.
CrossrefGoogle Scholar

[7]

D. Braess,
Asymptotics for the approximation of wave functions by exponential-sums,
J. Approx. Theory 83 (1995), 93–103.
CrossrefGoogle Scholar

[8]

A. Bunse-Gerstner, R. Byers and V. Mehrmann,
A chart of numerical methods for structured eigenvalue problems,
SIAM J. Matrix Anal. Appl. 13 (1992), 419–453.
CrossrefGoogle Scholar

[9]

A. Bunse-Gerstner and H. Faßbender,
Breaking Van Loan’s curse: A quest for structure-preserving algorithms for dense structured eigenvalue problems,
Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and Control Theory,
Springer, Cham (2015), 3–23.
Google Scholar

[10]

E. Cancés, A. Deleurence and M. Lewin,
A new approach to the modeling of local defects in crystals: The reduced Hartree–Fock case,
Comm. Math. Phys. 281 (2008), 129–177.
Google Scholar

[11]

E. Cancés, V. Ehrlacher and Y. Maday,
Periodic Schrödinger operator with local defects and spectral pollution,
SIAM J. Numer. Anal. 50 (2012), no. 6, 3016–3035.
CrossrefGoogle Scholar

[12]

A. Cichocki, N. Lee, I. Oseledets, A. H. Phan, Q. Zhao and D. P. Mandic,
Tensor networks for dimensionality reduction and large-scale optimization: Part 1 low-rank tensor decompositions,
Found. Trends Mach. Learn. 9 (2016), no. 4–5, 249–429.
Google Scholar

[13]

T. Darten, D. York and L. Pedersen,
Particle mesh Ewald: An $O(N\mathrm{log}N)$ method for Ewald sums in large systems,
J. Chem. Phys. 98 (1993), 10089–10092.
Google Scholar

[14]

J. P. Davis,
Circulant Matrices,
John Wiley & Sons, New York, 1979.
Google Scholar

[15]

S. Dolgov and B. N. Khoromskij,
Two-level QTT-Tucker format for optimized tensor calculus,
SIAM J. Matrix Anal. Appl. 34 (2013), no. 2, 593–623.
CrossrefGoogle Scholar

[16]

S. Dolgov, B. N. Khoromskij, D. Savostyanov and I. Oseledets,
Computation of extreme eigenvalues in higher dimensions using block tensor train format,
Comput. Phys. Commun. 185 (2014), no. 4, 1207–1216.
Google Scholar

[17]

R. Dovesi, R. Orlando, C. Roetti, C. Pisani and V. R. Sauders,
The periodic Hartree–Fock method and its implementation in the CRYSTAL code,
Phys. Stat. Sol. (b) 217 (2000), 63–88.
Google Scholar

[18]

T. H. Dunning, Jr.,
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen,
J. Chem. Phys. 90 (1989), 1007–1023.
Google Scholar

[19]

V. Ehrlacher, C. Ortner and A. V. Shapeev,
Analysis of boundary conditions for crystal defect atomistic simulations,
Arch. Ration. Mech. Anal. 222 (2016), no. 3, 1217–1268.
Google Scholar

[20]

P. P. Ewald,
Die Berechnung optische und elektrostatischer Gitterpotentiale,
Ann. Phys. 369 (1921), no. 3, 253–287.
Google Scholar

[21]

H. Faßbender and D. Kressner,
Structured eigenvalue problem,
GAMM-Mitt. 29 (2006), no. 2, 297–318.
CrossrefGoogle Scholar

[22]

L. Frediani, E. Fossgaard, T. Flå and K. Ruud,
Fully adaptive algorithms for multivariate integral equations using the non-standard form and multiwavelets with applications to the Poisson and bound-state Helmholtz kernels in three dimensions,
Mol. Phys. 111 (2013), 9–11.
Google Scholar

[23]

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci and G. A. Petersson,
Gaussian Development Version Revision H1,
Gaussian Inc., Wallingford, 2009.
Google Scholar

[24]

I. P. Gavrilyuk, W. Hackbusch and B. N. Khoromskij,
Hierarchical tensor-product approximation to the inverse and related operators in high-dimensional elliptic problems,
Computing 74 (2005), 131–157.
CrossrefGoogle Scholar

[25]

I. V. Gavrilyuk and B. N. Khoromskij,
Quantized-TT-Cayley transform to compute dynamics and spectrum of high-dimensional Hamiltonians,
Comput. Methods Appl. Math. 11 (2011), no. 3, 273–290.
CrossrefGoogle Scholar

[26]

L. Greengard and V. Rochlin,
A fast algorithm for particle simulations,
J. Comput. Phys. 73 (1987), 325–348.
Google Scholar

[27]

W. Hackbusch and B. N. Khoromskij,
Low-rank Kronecker product approximation to multi-dimensional nonlocal operators. Part I. Separable approximation of multi-variate functions,
Computing 76 (2006), 177–202.
CrossrefGoogle Scholar

[28]

W. Hackbusch, B. N. Khoromskij, S. Sauter and E. Tyrtyshnikov,
Use of tensor formats in elliptic eigenvalue problems,
Numer. Linear Algebra Appl. 19 (2012), no. 1, 133–151.
CrossrefGoogle Scholar

[29]

R. J. Harrison, G. I. Fann, T. Yanai, Z. Gan and G. Beylkin,
Multiresolution quantum chemistry: Basic theory and initial applications,
J. Chem. Phys. 121 (2004), no. 23, 11587–11598.
Google Scholar

[30]

D. R. Hartree,
The Calculation of Atomic Structure,
Wiley, New York, 1957.
Google Scholar

[31]

T. Helgaker, P. Jørgensen and J. Olsen,
Molecular Electronic-Structure Theory,
Wiley, New York, 1999.
Google Scholar

[32]

T. Kailath and A. Sayed,
Fast Reliable Algorithms for Matrices with Structure,
SIAM, Philadelphia, 1999.
Google Scholar

[33]

V. Khoromskaia,
Black-box Hartree–Fock solver by tensor numerical methods,
Comput. Methods Appl. Math. 14 (2014), no. 1, 89–111.
CrossrefGoogle Scholar

[34]

V. Khoromskaia, D. Andrae and B. N. Khoromskij,
Fast and accurate 3D tensor calculation of the Fock operator in a general basis,
Comput. Phys. Commun. 183 (2012), 2392–2404.
Google Scholar

[35]

V. Khoromskaia and B. N. Khoromskij,
Grid-based lattice summation of electrostatic potentials by assembled rank-structured tensor approximation,
Comput. Phys. Commun. 185 (2014), 3162–3174.
Google Scholar

[36]

V. Khoromskaia and B. N. Khoromskij,
Tensor approach to linearized Hartree–Fock equation for Lattice-type and periodic systems,
preprint (2014), https://arxiv.org/abs/1408.3839v1.

[37]

V. Khoromskaia and B. N. Khoromskij,
Tensor numerical methods in quantum chemistry: From Hartree–Fock to excitation energies,
Phys. Chem. Chem. Phys. 17 (2015), 31491–31509.
CrossrefGoogle Scholar

[38]

V. Khoromskaia and B. N. Khoromskij,
Fast tensor method for summation of long-range potentials on 3D lattices with defects,
Numer. Linear Algebra Appl. 23 (2016), 249–271.
CrossrefGoogle Scholar

[39]

B. N. Khoromskij,
Structured rank-$({r}_{1},\mathrm{\dots},{r}_{d})$ decomposition of function-related operators in ${R}^{d}$,
Comput. Methods Appl. Math. 6 (2006), no. 2, 194–220.
CrossrefGoogle Scholar

[40]

B. N. Khoromskij,
$O(d\mathrm{log}N)$-quantics approximation of $N$-$d$ tensors in high-dimensional numerical modeling,
Constr. Approx. 34 (2011), no. 2, 257–289.
CrossrefGoogle Scholar

[41]

B. N. Khoromskij,
Tensors-structured numerical methods in scientific computing: Survey on recent advances,
Chemometr. Intell. Lab. Syst. 110 (2012), 1–19.
Google Scholar

[42]

B. N. Khoromskij and V. Khoromskaia,
Multigrid tensor approximation of function related multi-dimensional arrays,
SIAM J. Sci. Comput. 31 (2009), no. 4, 3002–3026.
Google Scholar

[43]

B. N. Khoromskij and S. Repin,
A fast iteration method for solving elliptic problems with quasi-periodic coefficients,
Russian J. Numer. Anal. Math. Modelling 30 (2015), no. 6, 329–344.
Google Scholar

[44]

B. N. Khoromskij and S. Repin,
Rank structured approximation method for quasi-periodic elliptic problems,
preprint (2016), https://arxiv.org/abs/1701.00039.

[45]

T. G. Kolda and B. W. Bader,
Tensor decompositions and applications,
SIAM Rev. 51 (2009), no. 3, 455–500.
CrossrefGoogle Scholar

[46]

L. Lin, C. Yang, J. C. Meza, J. Lu, L. Ying and E. Weinan,
SelInv–An Algorithm for selected inversion of a sparse symmetric matrix,
ACM Trans. Math. Software 37 (2011), no. 4, Aricle No. 40.
CrossrefGoogle Scholar

[47]

S. A. Losilla, D. Sundholm and J. Juselius,
The direct approach to gravitation and electrostatics method for periodic systems,
J. Chem. Phys. 132 (2010), no. 2, Article ID 024102.
Google Scholar

[48]

M. Luskin, C. Ortner and B. Van Koten,
Formulation and optimization of the energy-based blended quasicontinuum method,
Comput. Methods Appl. Mech. Engrg. 253 (2013), 160–168.
Google Scholar

[49]

D. S. Mackey, N. Mackey and F. Tisseur,
Structured tools for structured matrices,
Electron. J. Linear Algebra 10 (2003), 106–145.
Google Scholar

[50]

I. V. Oseledets,
Approximation of ${2}^{d}\times {2}^{d}$ matrices using tensor decomposition,
SIAM J. Matrix Anal. Appl. 31 (2010), no. 4, 2130–2145.
CrossrefGoogle Scholar

[51]

I. V. Oseledets and E. E. Tyrtyshnikov,
Breaking the curse of dimensionality, or how to use SVD in many dimensions,
SIAM J. Sci. Comput. 31 (2009), no. 5, 3744–3759.
Google Scholar

[52]

P. Parkkinen, S. A. Losilla, E. Solala, E. A. Toivanen, W. Xu and D. Sundholm,
A generalized grid-based fast multipole method for integrating Helmholtz kernels,
J. Chem. Theory Comput. 13 (2017), 10.1021/acs.jctc.6b01207.
Google Scholar

[53]

C. Pisani, M. Schütz, S. Casassa, D. Usvyat, L. Maschio, M. Lorenz and A. Erba,
CRYSCOR: A program for the post-Hartree–Fock treatment of periodic systems,
Phys. Chem. Chem. Phys. 14 (2012), 7615–7628.
CrossrefGoogle Scholar

[54]

M. V. Rakhuba and I. V. Oseledets,
Calculating vibrational spectra of molecules using tensor train decomposition,
J. Chem. Phys. 145 (2016), no. 12, Article ID 124101.
Google Scholar

[55]

M. V. Rakhuba and I. V. Oseledets,
Grid-based electronic structure calculations: The tensor decomposition approach,
J. Comput. Phys. 312 (2016), 19–30.
Google Scholar

[56]

Y. Saad, J. R. Chelikowsky and S. M. Shontz,
Numerical methods for electronic structure calculations of materials,
SIAM Rev. 52 (2010), no. 1, 3–54.
CrossrefGoogle Scholar

[57]

U. Schollwöck,
The density-matrix renormalization group in the age of matrix product states,
Ann. Phys. 51 (2011), no. 326, 96–192.
Google Scholar

[58]

F. Stenger,
Numerical Methods Based on Sinc and Analytic Functions,
Springer, New York, 1993.
Google Scholar

[59]

A. Szabo and N. Ostlund,
Modern Quantum Chemistry,
Dover Publication, New York, 1996.
Google Scholar

[60]

H.-J. Werner and P. J. Knowles,
Molpro version 2010.1, a package of Ab-Initio programs for electronic structure calculations.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.