Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Computational Methods in Applied Mathematics

Editor-in-Chief: Carstensen, Carsten

Managing Editor: Matus, Piotr

4 Issues per year


IMPACT FACTOR 2017: 0.658

CiteScore 2017: 1.05

SCImago Journal Rank (SJR) 2017: 1.291
Source Normalized Impact per Paper (SNIP) 2017: 0.893

Mathematical Citation Quotient (MCQ) 2017: 0.76

Online
ISSN
1609-9389
See all formats and pricing
More options …
Volume 18, Issue 2

Issues

Bubbles Enriched Quadratic Finite Element Method for the 3D-Elliptic Obstacle Problem

Sharat Gaddam / Thirupathi Gudi
Published Online: 2017-07-11 | DOI: https://doi.org/10.1515/cmam-2017-0018

Abstract

An optimally convergent (with respect to the regularity) quadratic finite element method for the two-dimensional obstacle problem on simplicial meshes is studied in [14]. There was no analogue of a quadratic finite element method on tetrahedron meshes for the three-dimensional obstacle problem. In this article, a quadratic finite element enriched with element-wise bubble functions is proposed for the three-dimensional elliptic obstacle problem. A priori error estimates are derived to show the optimal convergence of the method with respect to the regularity. Further, a posteriori error estimates are derived to design an adaptive mesh refinement algorithm. A numerical experiment illustrating the theoretical result on a priori error estimates is presented.

Keywords: Finite Element; Quadratic FEM; 3D-Obstacle Problem; Error Estimates; Variational Inequalities; Lagrange Multiplier

MSC 2010: 65N30; 65N15; 65N12

References

  • [1]

    M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis, Pure Appl. Math. (New York), Wiley-Interscience, New York, 2000. Google Scholar

  • [2]

    M. Ainsworth, J. T. Oden and C.-Y. Lee, Local a posteriori error estimators for variational inequalities, Numer. Methods Partial Differential Equations 9 (1993), no. 1, 23–33. CrossrefGoogle Scholar

  • [3]

    K. Atkinson and W. Han, Theoretical Numerical Analysis, 3rd ed., Texts Appl. Math. 39, Springer, New York, 2009. Google Scholar

  • [4]

    L. Banz and E. P. Stephan, A posteriori error estimates of hp-adaptive IPDG-FEM for elliptic obstacle problems, Appl. Numer. Math. 76 (2014), 76–92. CrossrefWeb of ScienceGoogle Scholar

  • [5]

    S. Bartels and C. Carstensen, Averaging techniques yield reliable a posteriori finite element error control for obstacle problems, Numer. Math. 99 (2004), no. 2, 225–249. CrossrefGoogle Scholar

  • [6]

    F. Ben Belgacem, Numerical simulation of some variational inequalities arisen from unilateral contact problems by the finite element methods, SIAM J. Numer. Anal. 37 (2000), no. 4, 1198–1216. CrossrefGoogle Scholar

  • [7]

    H. Blum and F.-T. Suttmeier, An adaptive finite element discretisation for a simplified Signorini problem, Calcolo 37 (2000), no. 2, 65–77. CrossrefGoogle Scholar

  • [8]

    D. Braess, A posteriori error estimators for obstacle problems—Another look, Numer. Math. 101 (2005), no. 3, 415–421. CrossrefGoogle Scholar

  • [9]

    D. Braess, C. Carstensen and R. H. W. Hoppe, Convergence analysis of a conforming adaptive finite element method for an obstacle problem, Numer. Math. 107 (2007), no. 3, 455–471. Web of ScienceCrossrefGoogle Scholar

  • [10]

    D. Braess, C. Carstensen and R. H. W. Hoppe, Error reduction in adaptive finite element approximations of elliptic obstacle problems, J. Comput. Math. 27 (2009), no. 2–3, 148–169. Google Scholar

  • [11]

    S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Texts Appl. Math. 15, Springer, New York, 2008. Google Scholar

  • [12]

    S. C. Brenner, L. Sung and Y. Zhang, Finite element methods for the displacement obstacle problem of clamped plates, Math. Comp. 81 (2012), no. 279, 1247–1262. CrossrefGoogle Scholar

  • [13]

    S. C. Brenner, L.-Y. Sung, H. Zhang and Y. Zhang, A quadratic C0 interior penalty method for the displacement obstacle problem of clamped Kirchhoff plates, SIAM J. Numer. Anal. 50 (2012), no. 6, 3329–3350. Web of ScienceGoogle Scholar

  • [14]

    F. Brezzi, W. W. Hager and P.-A. Raviart, Error estimates for the finite element solution of variational inequalities, Numer. Math. 28 (1977), no. 4, 431–443. CrossrefGoogle Scholar

  • [15]

    Z. Chen and R. H. Nochetto, Residual type a posteriori error estimates for elliptic obstacle problems, Numer. Math. 84 (2000), no. 4, 527–548. CrossrefGoogle Scholar

  • [16]

    P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland Publishing, Amsterdam, 1978. Google Scholar

  • [17]

    G. Drouet and P. Hild, Optimal convergence for discrete variational inequalities modelling Signorini contact in 2D and 3D without additional assumptions on the unknown contact set, SIAM J. Numer. Anal. 53 (2015), no. 3, 1488–1507. CrossrefWeb of ScienceGoogle Scholar

  • [18]

    R. S. Falk, Error estimates for the approximation of a class of variational inequalities, Math. Comput. 28 (1974), 963–971. CrossrefGoogle Scholar

  • [19]

    M. Feischl, M. Page and D. Praetorius, Convergence of adaptive FEM for some elliptic obstacle problem with inhomogeneous Dirichlet data, Int. J. Numer. Anal. Model. 11 (2014), no. 1, 229–253. Google Scholar

  • [20]

    R. Glowinski, Numerical Methods for Nonlinear Variational Problems. Reprint of the 1984 original, Sci. Comput., Springer, Berlin, 2008. Google Scholar

  • [21]

    T. Gudi and K. Porwal, A posteriori error control of discontinuous Galerkin methods for elliptic obstacle problems, Math. Comp. 83 (2014), no. 286, 579–602. Google Scholar

  • [22]

    T. Gudi and K. Porwal, A remark on the a posteriori error analysis of discontinuous Galerkin methods for the obstacle problem, Comput. Methods Appl. Math. 14 (2014), no. 1, 71–87. Web of ScienceGoogle Scholar

  • [23]

    T. Gudi and K. Porwal, A reliable residual based a posteriori error estimator for a quadratic finite element method for the elliptic obstacle problem, Comput. Methods Appl. Math. 15 (2015), no. 2, 145–160. Web of ScienceGoogle Scholar

  • [24]

    J. Gwinner, On the p-version approximation in the boundary element method for a variational inequality of the second kind modelling unilateral contact and given friction, Appl. Numer. Math. 59 (2009), no. 11, 2774–2784. CrossrefWeb of ScienceGoogle Scholar

  • [25]

    J. Gwinner, hp-FEM convergence for unilateral contact problems with Tresca friction in plane linear elastostatics, J. Comput. Appl. Math. 254 (2013), 175–184. CrossrefWeb of ScienceGoogle Scholar

  • [26]

    P. Hild and S. Nicaise, A posteriori error estimations of residual type for Signorini’s problem, Numer. Math. 101 (2005), no. 3, 523–549. CrossrefGoogle Scholar

  • [27]

    P. Hild and Y. Renard, An improved a priori error analysis for finite element approximations of Signorini’s problem, SIAM J. Numer. Anal. 50 (2012), no. 5, 2400–2419. Web of ScienceCrossrefGoogle Scholar

  • [28]

    M. Hintermüller, K. Ito and K. Kunish, The primal-dual active set strategy as a semismooth Newton method, SIAM J. Optim. 13 (2003), 865–888. Google Scholar

  • [29]

    R. H. W. Hoppe and R. Kornhuber, Adaptive multilevel methods for obstacle problems, SIAM J. Numer. Anal. 31 (1994), no. 2, 301–323. CrossrefGoogle Scholar

  • [30]

    S. Hüeber and B. I. Wohlmuth, An optimal a priori error estimate for nonlinear multibody contact problems, SIAM J. Numer. Anal. 43 (2005), no. 1, 156–173. CrossrefGoogle Scholar

  • [31]

    S. Kesavan, Functional Analysis, Texts Read. Math. 52, Hindustan Book Agency, New Delhi, 2009. Google Scholar

  • [32]

    D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications. Reprint of the 1980 original, Class. Appl. Math. 31, Society for Industrial and Applied Mathematics, Philadelphia, 2000. Google Scholar

  • [33]

    R. H. Nochetto, K. G. Siebert and A. Veeser, Fully localized a posteriori error estimators and barrier sets for contact problems, SIAM J. Numer. Anal. 42 (2005), no. 5, 2118–2135. CrossrefGoogle Scholar

  • [34]

    R. H. Nochetto, T. von Petersdorff and C.-S. Zhang, A posteriori error analysis for a class of integral equations and variational inequalities, Numer. Math. 116 (2010), no. 3, 519–552. Web of ScienceCrossrefGoogle Scholar

  • [35]

    M. Page and D. Praetorius, Convergence of adaptive FEM for some elliptic obstacle problem, Appl. Anal. 92 (2013), no. 3, 595–615. Web of ScienceCrossrefGoogle Scholar

  • [36]

    A. Schröder, Mixed finite element methods of higher-order for model contact problems, SIAM J. Numer. Anal. 49 (2011), no. 6, 2323–2339. CrossrefWeb of ScienceGoogle Scholar

  • [37]

    L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990), no. 190, 483–493. CrossrefGoogle Scholar

  • [38]

    K. G. Siebert and A. Veeser, A unilaterally constrained quadratic minimization with adaptive finite elements, SIAM J. Optim. 18 (2007), no. 1, 260–289. CrossrefWeb of ScienceGoogle Scholar

  • [39]

    F. T. Suttmeier, Numerical Solution of Variational Inequalities by Adaptive Finite Elements, Vieweg+Teubner, Wiesbaden, 2008. Google Scholar

  • [40]

    A. Veeser, Efficient and reliable a posteriori error estimators for elliptic obstacle problems, SIAM J. Numer. Anal. 39 (2001), no. 1, 146–167. CrossrefGoogle Scholar

  • [41]

    F. Wang, W. Han and X.-L. Cheng, Discontinuous Galerkin methods for solving elliptic variational inequalities, SIAM J. Numer. Anal. 48 (2010), no. 2, 708–733. Web of ScienceCrossrefGoogle Scholar

  • [42]

    F. Wang, W. Han, J. Eichholz and X. Cheng, A posteriori error estimates for discontinuous Galerkin methods of obstacle problems, Nonlinear Anal. Real World Appl. 22 (2015), 664–679. Web of ScienceCrossrefGoogle Scholar

  • [43]

    L. Wang, On the quadratic finite element approximation to the obstacle problem, Numer. Math. 92 (2002), no. 4, 771–778. CrossrefGoogle Scholar

  • [44]

    A. Weiss and B. I. Wohlmuth, A posteriori error estimator and error control for contact problems, Math. Comp. 78 (2009), no. 267, 1237–1267. CrossrefGoogle Scholar

  • [45]

    A. Weiss and B. I. Wohlmuth, A posteriori error estimator for obstacle problems, SIAM J. Sci. Comput. 32 (2010), no. 5, 2627–2658. Web of ScienceCrossrefGoogle Scholar

  • [46]

    Q. Zou, A. Veeser, R. Kornhuber and C. Gräser, Hierarchical error estimates for the energy functional in obstacle problems, Numer. Math. 117 (2011), no. 4, 653–677. CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2016-11-03

Revised: 2017-04-10

Accepted: 2017-06-07

Published Online: 2017-07-11

Published in Print: 2018-04-01


Citation Information: Computational Methods in Applied Mathematics, Volume 18, Issue 2, Pages 223–236, ISSN (Online) 1609-9389, ISSN (Print) 1609-4840, DOI: https://doi.org/10.1515/cmam-2017-0018.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in