Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Computational Methods in Applied Mathematics

Editor-in-Chief: Carstensen, Carsten

Managing Editor: Matus, Piotr

4 Issues per year


IMPACT FACTOR 2017: 0.658

CiteScore 2017: 1.05

SCImago Journal Rank (SJR) 2017: 1.291
Source Normalized Impact per Paper (SNIP) 2017: 0.893

Mathematical Citation Quotient (MCQ) 2017: 0.76

Online
ISSN
1609-9389
See all formats and pricing
More options …
Volume 18, Issue 2

Issues

Modified Minimal Error Method for Nonlinear Ill-Posed Problems

M. Sabari
  • Corresponding author
  • Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka, Mangaluru 575 025, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Santhosh George
  • Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka,Mangaluru 575 025, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-07-28 | DOI: https://doi.org/10.1515/cmam-2017-0024

Abstract

An error estimate for the minimal error method for nonlinear ill-posed problems under general a Hölder-type source condition is not known. We consider a modified minimal error method for nonlinear ill-posed problems. Using a Hölder-type source condition, we obtain an optimal order error estimate. We also consider the modified minimal error method with noisy data and provide an error estimate.

Keywords: Nonlinear Ill-Posed Problem; Minimal Error Method; Regularization Method; Discrepancy Principle

MSC 2010: 65J15; 65J20; 47H17

References

  • [1]

    I. K. Argyros, S. George and P. Jidesh, Inverse free iterative methods for nonlinear ill-posed operator equations, Int. J. Math. Math. Sci. 2014 (2014), Article ID 754154. Google Scholar

  • [2]

    H. W. Engl, Regularization methods for the stable solution of inverse problems, Surveys Math. Indust. 3 (1993), no. 2, 71–143. Google Scholar

  • [3]

    H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Math. Appl., Kluwer Academic, Dordrecht, 2000. Google Scholar

  • [4]

    H. W. Engl, K. Kunisch and A. Neubauer, Convergence rates for Tikhonov regularisation of nonlinear ill-posed problems, Inverse Problems 5 (1989), no. 4, 523–540. CrossrefGoogle Scholar

  • [5]

    S. George, On convergence of regularized modified Newton’s method for nonlinear ill-posed problems, J. Inverse Ill-Posed Probl. 18 (2010), 133–146. Web of ScienceGoogle Scholar

  • [6]

    S. George and M. T. Nair, A modified Newton–Lavrentiev regularization for nonlinear ill-posed Hammerstein-type operator equations, J. Complexity 24 (2008), no. 2, 228–240. Web of ScienceCrossrefGoogle Scholar

  • [7]

    S. George and M. T. Nair, A derivative–free iterative method for nonlinear ill-posed equations with monotone operators, J. Inverse Ill-Posed Probl. (2016), 10.1515/jiip-2014-0049. Web of ScienceGoogle Scholar

  • [8]

    S. George and M. Sabari, Convergence rate results for steepest descent type method for nonlinear ill-posed equations, Appl. Math. Comput. 294 (2017), 169–179. Web of ScienceGoogle Scholar

  • [9]

    S. F. Gilyazov, Iterative solution methods for inconsistent linear equations with non-self-adjoint operators, Moscow Univ. Comp. Math. Cyb. 1 (1997), 8–13. Google Scholar

  • [10]

    M. Hanke, A. Neubauer and O. Scherzer, A convergence analysis of the Landweber iteration for nonlinear ill-posed problems, Numer. Math. 72 (1995), no. 1, 21–37. CrossrefGoogle Scholar

  • [11]

    Q. Jin, On a class of frozen regularized Gauss–Newton methods for nonlinear inverse problems, Math. Comp. 79 (2010), no. 272, 2191–2211. CrossrefGoogle Scholar

  • [12]

    B. Kaltenbacher, A. Neubauer and O. Scherzer, Iterative Regularization Methods for Nonlinear Ill-Posed Problems, Radon Ser. Comput. Appl. Math. 6, De Gruyter, Berlin, 2008. Google Scholar

  • [13]

    A. Neubauer, Tikhonov regularisation for nonlinear ill-posed problems: Optimal convergence rates and finite-dimensional approximation, Inverse Problems 5 (1989), no. 4, 541–557. CrossrefGoogle Scholar

  • [14]

    A. Neubauer and O. Scherzer, A convergence rate result for a steepest descent method and a minimal error method for the solution of nonlinear ill-posed problems, Z. Anal. Anwend. 14 (1995), no. 2, 369–377. CrossrefGoogle Scholar

  • [15]

    R. Ramlau, A modified Landweber method for inverse problems, Numer. Funct. Anal. Optim. 20 (1999), no. 1–2, 79–98. CrossrefGoogle Scholar

  • [16]

    R. Ramlau, TIGRA—an iterative algorithm for regularizing nonlinear ill-posed problems, Inverse Problems 19 (2003), no. 2, 433–465. CrossrefGoogle Scholar

  • [17]

    O. Scherzer, H. W. Engl and K. Kunisch, Optimal a posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems, SIAM J. Numer. Anal. 30 (1993), no. 6, 1796–1838. CrossrefGoogle Scholar

  • [18]

    E. V. Semenova, Lavrentiev regularization and balancing principle for solving ill-posed problems with monotone operators, Comput. Methods Appl. Math. 10 (2010), no. 4, 444–454. Google Scholar

  • [19]

    V. Vasin, Irregular nonlinear operator equations: Tikhonov’s regularization and iterative approximation, J. Inverse Ill-Posed Probl. 21 (2013), 109–123. Web of ScienceGoogle Scholar

  • [20]

    V. Vasin and S. George, An analysis of Lavrentiev regularization method and Newton type process for nonlinear ill-posed problems, Appl. Math. Comput. 230 (2014), 406–413. Web of ScienceGoogle Scholar

  • [21]

    V. Vasin and S. George, Expanding the applicability of Tikhonov’s regularization and iterative approximation for ill-posed problems, J. Inverse Ill-Posed Probl. 22 (2014), no. 4, 593–607. Web of ScienceGoogle Scholar

About the article

Received: 2017-01-24

Revised: 2017-06-12

Accepted: 2017-06-29

Published Online: 2017-07-28

Published in Print: 2018-04-01


One of the authors, Ms. Sabari, thanks National Institute of Technology Karnataka, India, for the financial support.


Citation Information: Computational Methods in Applied Mathematics, Volume 18, Issue 2, Pages 313–321, ISSN (Online) 1609-9389, ISSN (Print) 1609-4840, DOI: https://doi.org/10.1515/cmam-2017-0024.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in