[1]

G. Adomian,
Nonlinear Stochastic Systems: Theory and Application to Physics,
Springer, Netherlands, 1989.
Google Scholar

[2]

A. Ammi and M. Marion,
Nonlinear Galerkin methods and mixed finite elements: Two-grid algorithms for the Navier–Stokes equations,
Numer. Math. 68 (1994), no. 2, 189–213.
CrossrefGoogle Scholar

[3]

I. Babuška, F. Nobile and R. Tempone,
A stochastic collocation method for elliptic partial differential equations with random input data,
SIAM Rev. 52 (2010), no. 2, 317–355.
Web of ScienceCrossrefGoogle Scholar

[4]

I. Babuška, R. Tempone and G. Zouraris,
Galerkin finite element approximations of stochastic elliptic partial differential equations,
SIAM J. Numer. Anal. 42 (2004), no. 2, 800–825.
CrossrefGoogle Scholar

[5]

V. Barthelmann, E. Novak and K. Ritter,
High dimensional polynomial interpolation on sparse grids,
Adv. Comput. Math. 12 (2000), no. 4, 273–288.
CrossrefGoogle Scholar

[6]

N. Bellomo and R. Riganti,
Nonlinear Stochastic Systems in Physics and Mechanics,
World Scientific, Singapore, 1987.
Google Scholar

[7]

R. Caflisch,
Monte Carlo and quasi-Monte Carlo methods,
Acta Numer. 7 (1998), 1–49.
CrossrefGoogle Scholar

[8]

Y. Chen, Y. Huang and D. Yu,
A two-grid method for expanded mixed finite-element solution of semilinear reaction–diffusion equations,
Int. J. Numer. Meth. Eng. 57 (2003), no. 2, 193–209.
CrossrefGoogle Scholar

[9]

Y. Chen, H. Liu and S. Liu,
Analysis of two-grid methods for reaction-diffusion equations by expanded mixed finite element methods,
Int. J. Numer. Meth. Eng. 69 (2007), no. 2, 408–422.
Web of ScienceCrossrefGoogle Scholar

[10]

C. Chien and B. Jeng,
A two-grid discretization scheme for semilinear elliptic eigenvalue problems,
SIAM J. Sci. Comput. 27 (2006), no. 4, 1287–1304.
CrossrefGoogle Scholar

[11]

C. Dawson and M. Wheeler,
Two-grid methods for mixed finite element approximations of nonlinear parabolic equations,
Contemp. Math. 180 (1994), 191–191.
CrossrefGoogle Scholar

[12]

C. Dawson, M. Wheeler and C. Woodward,
A two-grid finite difference scheme for nonlinear parabolic equations,
SIAM J. Numer. Anal. 35 (1998), no. 2, 435–452.
CrossrefGoogle Scholar

[13]

T. Gerstner and M. Griebel,
Numerical integration using sparse grids,
Numer. Algorithms 18 (1998), no. 3, 209.
CrossrefGoogle Scholar

[14]

R. Ghanem and P. Spanos,
Stochastic Finite Elements: A Spectral Approach,
Springer, New York, 1991.
Google Scholar

[15]

V. Girault and J. Lions,
Two-grid finite-element schemes for the steady Navier–Stokes problem in polyhedra,
Port. Math. 58 (2001), no. 1, 25–58.
Google Scholar

[16]

S. Hosder, R. Walters and R. Perez,
A non-intrusive polynomial chaos method for uncertainty propagation in CFD simulations,
Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exibit (Reno 2006),
AIAA, Reston (2006), 1–19.
Google Scholar

[17]

A. Klimke,
Sparse grid interpolation toolbox – User’s guide,
IANS Report 2007/017, University of Stuttgart, 2007.
Google Scholar

[18]

O. Knio, H. Najm and R. Ghanem,
A stochastic projection method for fluid flow: I. Basic formulation,
J. Comput. Phys. 173 (2001), no. 2, 481–511.
CrossrefGoogle Scholar

[19]

W. Layton and W. Lenferink,
Two-level Picard and modified Picard methods for the Navier–Stokes equations,
Appl. Math. Comput. 69 (1995), no. 2, 263–274.
Google Scholar

[20]

W. Layton, A. Meir and P. Schmidt,
A two-level discretization method for the stationary MHD equations,
Electron. Trans. Numer. Anal. 6 (1997), 198–210.
Google Scholar

[21]

W. Layton and L. Tobiska,
A two-level method with backtracking for the Navier–Stokes equations,
SIAM J. Numer. Anal. 35 (1998), no. 5, 2035–2054.
CrossrefGoogle Scholar

[22]

O. Le Maître, M. Reagan, H. Najm, R. Ghanem and O. Knio,
A stochastic projection method for fluid flow: II. Random process,
J. Comput. Phys. 181 (2002), no. 1, 9–44.
CrossrefGoogle Scholar

[23]

X. Ma and N. Zabaras,
An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations,
J. Comput. Phys. 228 (2009), no. 8, 3084–3113.
Web of ScienceCrossrefGoogle Scholar

[24]

X. Ma and N. Zabaras,
A stochastic mixed finite element heterogeneous multiscale method for flow in porous media,
J. Comput. Phys. 230 (2011), no. 12, 4696–4722.
CrossrefWeb of ScienceGoogle Scholar

[25]

H. Matthies and A. Keese,
Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations,
Comput. Methods Appl. Math. 194 (2005), no. 12, 1295–1331.
Google Scholar

[26]

H. Najm,
Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics,
Annu. Rev. Fluid Mech. 41 (2009), 35–52.
CrossrefWeb of ScienceGoogle Scholar

[27]

F. Nobile, R. Tempone and C. G. Webster,
A sparse grid stochastic collocation method for partial differential equations with random input data,
SIAM J. Numer. Anal 46 (2008), no. 5, 2309–2345.
Web of ScienceCrossrefGoogle Scholar

[28]

B. Øksendal,
Stochastic Differential Equations: An Introduction with Applications,
Springer, New York, 2003.
Google Scholar

[29]

M. Shinozuka and Y. Wen,
Monte Carlo solution of nonlinear vibrations,
AIAA J. 10 (1972), no. 1, 37–40.
CrossrefGoogle Scholar

[30]

S. A. Smoljak,
Quadrature and interpolation formulae on tensor products of certain function classes,
Dokl. Akad. Nauk 4 (1963), no. 5, 240–243.
Google Scholar

[31]

T. Utnes,
Two-grid finite element formulations of the incompressible Navier–Stokes equations,
Commun. Numer. Meth. Eng. 13 (1997), no. 8, 675–684.
CrossrefGoogle Scholar

[32]

D. Xiu and J. Hesthaven,
High-order collocation methods for differential equations with random inputs,
SIAM J. Sci. Comput. 27 (2005), no. 3, 1118–1139.
CrossrefGoogle Scholar

[33]

D. Xiu and G. Karniadakis,
The Wiener–Askey polynomial chaos for stochastic differential equations,
SIAM J. Sci. Comput. 24 (2002), no. 2, 619–644.
CrossrefGoogle Scholar

[34]

D. Xiu and G. Karniadakis,
Modeling uncertainty in flow simulations via generalized polynomial chaos,
J. Comput. Phys. 187 (2003), no. 1, 137–167.
CrossrefGoogle Scholar

[35]

D. Xiu, D. Lucor, C. Su and G. Karniadakis,
Stochastic modeling of flow-structure interactions using generalized polynomial chaos,
ASME J. Fluid Engrg. 124 (2002), no. 1, 51–69.
CrossrefGoogle Scholar

[36]

J. Xu,
A novel two-grid method for semilinear elliptic equations,
SIAM J. Sci. Comput. 15 (1994), no. 1, 231–237.
CrossrefGoogle Scholar

[37]

J. Xu,
Two-grid discretization techniques for linear and nonlinear PDEs,
SIAM J. Numer. Anal. 33 (1996), no. 5, 1759–1777.
CrossrefGoogle Scholar

[38]

J. Xu and A. Zhou,
A two-grid discretization scheme for eigenvalue problems,
Math. Comp. 70 (2001), no. 233, 17–25.
Google Scholar

[39]

W. Yao and T. Lu,
Numerical comparison of three stochastic methods for nonlinear PN junction problems,
Front. Math. China 9 (2014), no. 3, 659–698.
Web of ScienceCrossrefGoogle Scholar

[40]

Q. Zhang, Z. Li and Z. Zhang,
A sparse grid stochastic collocation method for elliptic interface problems with random input,
J. Sci. Comput. 67 (2016), no. 1, 262–280.
CrossrefWeb of ScienceGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.