Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Computational Methods in Applied Mathematics

Editor-in-Chief: Carstensen, Carsten

Managing Editor: Matus, Piotr

IMPACT FACTOR 2018: 1.218
5-year IMPACT FACTOR: 1.411

CiteScore 2018: 1.42

SCImago Journal Rank (SJR) 2018: 0.947
Source Normalized Impact per Paper (SNIP) 2018: 0.939

Mathematical Citation Quotient (MCQ) 2018: 1.22

See all formats and pricing
More options …
Volume 18, Issue 3


Towards Pressure-Robust Mixed Methods for the Incompressible Navier–Stokes Equations

Naveed Ahmed / Alexander Linke / Christian Merdon
Published Online: 2017-11-18 | DOI: https://doi.org/10.1515/cmam-2017-0047


In this contribution, we review classical mixed methods for the incompressible Navier–Stokes equations that relax the divergence constraint and are discretely inf-sup stable. Though the relaxation of the divergence constraint was claimed to be harmless since the beginning of the 1970s, Poisson locking is just replaced by another more subtle kind of locking phenomenon, which is sometimes called poor mass conservation and led in computational practice to the exclusion of mixed methods with low-order pressure approximations like the Bernardi–Raugel or the Crouzeix–Raviart finite element methods. Indeed, divergence-free mixed methods and classical mixed methods behave qualitatively in a different way: divergence-free mixed methods are pressure-robust, which means that, e.g., their velocity error is independent of the continuous pressure. The lack of pressure robustness in classical mixed methods can be traced back to a consistency error of an appropriately defined discrete Helmholtz projector. Numerical analysis and numerical examples reveal that really locking-free mixed methods must be discretely inf-sup stable and pressure-robust, simultaneously. Further, a recent discovery shows that locking-free, pressure-robust mixed methods do not have to be divergence free. Indeed, relaxing the divergence constraint in the velocity trial functions is harmless, if the relaxation of the divergence constraint in some velocity test functions is repaired, accordingly. Thus, inf-sup stable, pressure-robust mixed methods will potentially allow in future to reduce the approximation order of the discretizations used in computational practice, without compromising the accuracy.

Keywords: Incompressible Navier–Stokes Equations; Mixed Finite Element Methods; Pressure Robustness; Helmholtz Projector; A Priori Error Estimates

MSC 2010: 76D05; 65M60; 65N30


  • [1]

    N. Ahmed, A. Linke and C. Merdon, Towards pressure-robust mixed methods for the incompressible Navier–Stokes equations, Finite Volumes for Complex Applications VIII—Methods and Theoretical Aspects, Springer Proc. Math. Stat. 199, Springer, Cham (2017), 351–359. Google Scholar

  • [2]

    D. N. Arnold, F. Brezzi and M. Fortin, A stable finite element for the Stokes equations, Calcolo 21 (1984), no. 4, 337–344. CrossrefGoogle Scholar

  • [3]

    I. Babuška and M. Suri, Locking effects in the finite element approximation of elasticity problems, Numer. Math. 62 (1992), no. 4, 439–463. CrossrefGoogle Scholar

  • [4]

    I. Babuška and M. Suri, On locking and robustness in the finite element method, SIAM J. Numer. Anal. 29 (1992), no. 5, 1261–1293. CrossrefGoogle Scholar

  • [5]

    C. Bernardi and G. Raugel, Analysis of some finite elements for the Stokes problem, Math. Comp. 44 (1985), no. 169, 71–79. CrossrefGoogle Scholar

  • [6]

    J. Bonelle and A. Ern, Analysis of compatible discrete operator schemes for the Stokes equations on polyhedral meshes, IMA J. Numer. Anal. 35 (2015), no. 4, 1672–1697. Web of ScienceCrossrefGoogle Scholar

  • [7]

    C. Brennecke, A. Linke, C. Merdon and J. Schöberl, Optimal and pressure-independent L2 velocity error estimates for a modified Crouzeix–Raviart Stokes element with BDM reconstructions, J. Comput. Math. 33 (2015), no. 2, 191–208. Web of ScienceGoogle Scholar

  • [8]

    F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Ser. Comput. Math. 15, Springer, New York, 1991. Google Scholar

  • [9]

    M. A. Case, V. J. Ervin, A. Linke and L. G. Rebholz, A connection between Scott–Vogelius and grad-div stabilized Taylor–Hood FE approximations of the Navier–Stokes equations, SIAM J. Numer. Anal. 49 (2011), no. 4, 1461–1481. Web of ScienceCrossrefGoogle Scholar

  • [10]

    R. Codina, Numerical solution of the incompressible Navier–Stokes equations with Coriolis forces based on the discretization of the total time derivative, J. Comput. Phys. 148 (1999), no. 2, 467–496. CrossrefGoogle Scholar

  • [11]

    M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7 (1973), no. R-3, 33–75. Google Scholar

  • [12]

    D. A. Di Pietro, A. Ern, A. Linke and F. Schieweck, A discontinuous skeletal method for the viscosity-dependent Stokes problem, Comput. Methods Appl. Mech. Engrg. 306 (2016), 175–195. CrossrefGoogle Scholar

  • [13]

    O. Dorok, W. Grambow and L. Tobiska, Aspects of finite element discretizations for solving the Boussinesq approximation of the Navier–Stokes equations, Numerical Methods for the Navier–Stokes Equations, Notes on Numer. Fluid Mech. 47, Vieweg+Teubner, Wiesbaden (1994), 50–61. Google Scholar

  • [14]

    M. Fortin and A. Fortin, Newer and newer elements for incompressible flows, Finite Elements Fluids 6 (1985), 171–187. Google Scholar

  • [15]

    L. P. Franca and T. J. R. Hughes, Two classes of mixed finite element methods, Comput. Methods Appl. Mech. Engrg. 69 (1988), no. 1, 89–129. CrossrefGoogle Scholar

  • [16]

    P. Frolkovic, Consistent velocity approximation for density driven flow and transport, Advanced Computational Methods in Engineering. Part 2, Shaker Publishing, Maastricht (1998), 603–611. Google Scholar

  • [17]

    K. J. Galvin, A. Linke, L. G. Rebholz and N. E. Wilson, Stabilizing poor mass conservation in incompressible flow problems with large irrotational forcing and application to thermal convection, Comput. Methods Appl. Mech. Engrg. 237/240 (2012), 166–176. CrossrefGoogle Scholar

  • [18]

    S. Ganesan and V. John, Pressure separation—A technique for improving the velocity error in finite element discretisations of the Navier–Stokes equations, Appl. Math. Comput. 165 (2005), no. 2, 275–290. Google Scholar

  • [19]

    S. Ganesan, G. Matthies and L. Tobiska, On spurious velocities in incompressible flow problems with interfaces, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 7, 1193–1202. CrossrefGoogle Scholar

  • [20]

    J.-F. Gerbeau, C. Le Bris and M. Bercovier, Spurious velocities in the steady flow of an incompressible fluid subjected to external forces, Internat. J. Numer. Methods Fluids 25 (1997), no. 6, 679–695. CrossrefGoogle Scholar

  • [21]

    V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations, Springer Ser. Comput. Math.5, Springer, Berlin, 1986. Google Scholar

  • [22]

    P. M. Gresho, R. L. Lee, S. T. Chan and J. M. Leone, A new finite element for incompressible or Boussinesq fluids, International Conference on Finite Elements in Flow Problems. Volume 1 (Banff 1980), University of Calgary, Calgary (1981), 204–215. Google Scholar

  • [23]

    J. Guzmán and M. Neilan, Conforming and divergence-free Stokes elements in three dimensions, IMA J. Numer. Anal. 34 (2014), no. 4, 1489–1508. Web of ScienceCrossrefGoogle Scholar

  • [24]

    J. Guzmán and M. Neilan, Conforming and divergence-free Stokes elements on general triangular meshes, Math. Comp. 83 (2014), no. 285, 15–36. Google Scholar

  • [25]

    E. Jenkins, V. John, A. Linke and L. Rebholz, On the parameter choice in grad-div stabilization for the Stokes equations, Adv. Comput. Math. 40 (2014), no. 2, 491–516. Web of ScienceCrossrefGoogle Scholar

  • [26]

    V. John, Finite Element Methods for Incompressible Flow Problems, Springer Ser. Comput. Math. 51, Springer, Cham, 2016. Google Scholar

  • [27]

    V. John, A. Linke, C. Merdon, M. Neilan and L. G. Rebholz, On the divergence constraint in mixed finite element methods for incompressible flows, SIAM Rev. 59 (2017), no. 3, 492–544. CrossrefWeb of ScienceGoogle Scholar

  • [28]

    P. L. Lederer, A. Linke, C. Merdon and J. Schöberl, Divergence-free reconstruction operators for pressure-robust Stokes discretizations with continuous pressure finite elements, SIAM J. Numer. Anal. 55 (2017), no. 3, 1291–1314. CrossrefWeb of ScienceGoogle Scholar

  • [29]

    C. Lehrenfeld and J. Schöberl, High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows, Comput. Methods Appl. Mech. Engrg. 307 (2016), 339–361. CrossrefGoogle Scholar

  • [30]

    A. Linke, Collision in a cross-shaped domain—A steady 2D Navier–Stokes example demonstrating the importance of mass conservation in CFD, Comput. Methods Appl. Mech. Engrg. 198 (2009), no. 41–44, 3278–3286. CrossrefGoogle Scholar

  • [31]

    A. Linke, A divergence-free velocity reconstruction for incompressible flows, C. R. Math. Acad. Sci. Paris 350 (2012), no. 17–18, 837–840. CrossrefGoogle Scholar

  • [32]

    A. Linke, On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime, Comput. Methods Appl. Mech. Engrg. 268 (2014), 782–800. CrossrefGoogle Scholar

  • [33]

    A. Linke, G. Matthies and L. Tobiska, Robust arbitrary order mixed finite element methods for the incompressible Stokes equations with pressure independent velocity errors, ESAIM Math. Model. Numer. Anal. 50 (2016), no. 1, 289–309. Web of ScienceCrossrefGoogle Scholar

  • [34]

    A. Linke and C. Merdon, On velocity errors due to irrotational forces in the Navier–Stokes momentum balance, J. Comput. Phys. 313 (2016), 654–661. CrossrefWeb of ScienceGoogle Scholar

  • [35]

    A. Linke and C. Merdon, Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier–Stokes equations, Comput. Methods Appl. Mech. Engrg. 311 (2016), 304–326. CrossrefGoogle Scholar

  • [36]

    A. Linke, C. Merdon and W. Wollner, Optimal L2 velocity error estimate for a modified pressure-robust Crouzeix–Raviart Stokes element, IMA J. Numer. Anal. 37 (2017), no. 1, 354–374. Web of ScienceGoogle Scholar

  • [37]

    M. Neilan, Discrete and conforming smooth de Rham complexes in three dimensions, Math. Comp. 84 (2015), no. 295, 2059–2081. CrossrefGoogle Scholar

  • [38]

    M. A. Olshanskii and A. Reusken, Grad-div stabilization for Stokes equations, Math. Comp. 73 (2004), no. 248, 1699–1718. Google Scholar

  • [39]

    D. Pelletier, A. Fortin and R. Camarero, Are FEM solutions of incompressible flows really incompressible? (or how simple flows can cause headaches!), Internat. J. Numer. Methods Fluids 9 (1989), no. 1, 99–112. CrossrefGoogle Scholar

  • [40]

    J. Qin, On the Convergence of Some Low Order Mixed Finite Elements for Incompressible Fluids, ProQuest LLC, Ann Arbor, 1994; Ph.D. thesis, The Pennsylvania State University, 1994. Google Scholar

  • [41]

    J. Qin and S. Zhang, Stability and approximability of the 𝒫1-𝒫0 element for Stokes equations, Internat. J. Numer. Methods Fluids 54 (2007), no. 5, 497–515. Google Scholar

  • [42]

    F. Schieweck, Parallele Lösung der Navier–Stokes-Gleichungen, Habilitation, University of Magdeburg, Magdeburg, 1997. Google Scholar

  • [43]

    H. Sohr, The Navier–Stokes Equations, Mod. Birkhäuser Class., Birkhäuser, Basel, 2001. Google Scholar

  • [44]

    R. Stenberg, Error analysis of some finite element methods for the Stokes problem, Math. Comp. 54 (1990), no. 190, 495–508. CrossrefGoogle Scholar

  • [45]

    R. W. Thatcher and D. Silvester, A locally mass conserving quadratic velocity, linear pressure element, Numerical Analysis Report No. 147, Manchester University/UMIST, 1987. Google Scholar

  • [46]

    D. M. Tidd, R. W. Thatcher and A. Kaye, The free surface flow of Newtonian and non-Newtonian fluids trapped by surface tension, Internat. J. Numer. Methods Fluids 8 (1988), no. 9, 1011–1027. CrossrefGoogle Scholar

  • [47]

    S. Zhang, A new family of stable mixed finite elements for the 3D Stokes equations, Math. Comp. 74 (2005), no. 250, 543–554. Google Scholar

  • [48]

    S. Zhang, A family of Qk+1,k×Qk,k+1 divergence-free finite elements on rectangular grids, SIAM J. Numer. Anal. 47 (2009), no. 3, 2090–2107. Google Scholar

  • [49]

    S. Zhang, Divergence-free finite elements on tetrahedral grids for k6, Math. Comp. 80 (2011), no. 274, 669–695. Google Scholar

  • [50]

    S. Zhang, Quadratic divergence-free finite elements on Powell–Sabin tetrahedral grids, Calcolo 48 (2011), no. 3, 211–244. CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2017-05-12

Revised: 2017-09-06

Accepted: 2017-10-03

Published Online: 2017-11-18

Published in Print: 2018-07-01

Citation Information: Computational Methods in Applied Mathematics, Volume 18, Issue 3, Pages 353–372, ISSN (Online) 1609-9389, ISSN (Print) 1609-4840, DOI: https://doi.org/10.1515/cmam-2017-0047.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Daniel Castanon Quiroz and Daniele A. Di Pietro
Computers & Mathematics with Applications, 2019
Paola F. Antonietti, Jérôme Droniou, and Robert Eymard
Computational Methods in Applied Mathematics, 2018, Volume 18, Number 3, Page 323
Alexander Linke and Leo G. Rebholz
Journal of Computational Physics, 2019, Volume 388, Page 350

Comments (0)

Please log in or register to comment.
Log in