Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Computational Methods in Applied Mathematics

Editor-in-Chief: Carstensen, Carsten

Managing Editor: Matus, Piotr

4 Issues per year

IMPACT FACTOR 2017: 0.658

CiteScore 2017: 1.05

SCImago Journal Rank (SJR) 2017: 1.291
Source Normalized Impact per Paper (SNIP) 2017: 0.893

Mathematical Citation Quotient (MCQ) 2017: 0.76

See all formats and pricing
More options …
Volume 18, Issue 4


Assessment of Characteristic Boundary Conditions Based on the Artificial Compressibility Method in Generalized Curvilinear Coordinates for Solution of the Euler Equations

Kaveh ParsehORCID iD: http://orcid.org/0000-0002-8078-4903 / Kazem Hejranfar
Published Online: 2017-11-14 | DOI: https://doi.org/10.1515/cmam-2017-0048


The characteristic boundary conditions are applied and assessed for the solution of incompressible inviscid flows. The two-dimensional incompressible Euler equations based on the artificial compressibility method are considered and then the characteristic boundary conditions are formulated in the generalized curvilinear coordinates and implemented on both the far-field and wall boundaries. A fourth-order compact finite-difference scheme is used to discretize the resulting system of equations. The solution methodology adopted is more suitable for this assessment because the Euler equations and the high-accurate numerical scheme applied are quite sensitive to the treatment of boundary conditions. Two benchmark test cases are computed to investigate the accuracy and performance of the characteristic boundary conditions implemented compared to the simplified boundary conditions. The sensitivity of the solution obtained by applying the characteristic boundary conditions to the different numerical parameters is also studied. Indications are that the characteristic boundary conditions applied improve the accuracy and the convergence rate of the solution compared to the simplified boundary conditions.

Keywords: Characteristic Boundary Conditions; Incompressible Flows; Artificial Compressibility Method; Euler Equations; Compact Finite-Difference Method; Generalized Curvilinear Coordinates

MSC 2010: 35Q31; 65B99; 76B99; 65M25; 65M06


  • [1]

    Y. Adam, A Hermitian finite difference method for the solution of parabolic equations Comput. Math. Appl. 1 (1975), 393–406. CrossrefGoogle Scholar

  • [2]

    T. Amro, A. Arnold and M. Ehrhardt, Optimized far field boundary conditions for hyperbolic systems, preprint BUW-IMACM 12.02 (2012).

  • [3]

    A. Bayliss and E. Turkel, Radiation boundary conditions for wave-like equations, Comm. Pure Appl. Math. 33 (1980), no. 6, 707–725. CrossrefGoogle Scholar

  • [4]

    E. Bécache and A. Prieto, Remarks on the stability of Cartesian PMLs in corners, Appl. Numer. Math. 62 (2012), no. 11, 1639–1653. CrossrefWeb of ScienceGoogle Scholar

  • [5]

    J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys. 114 (1994), no. 2, 185–200. CrossrefGoogle Scholar

  • [6]

    M. H. Carpenter, D. Gottlieb and S. Abarbanel, Stable and accurate boundary treatments for compact, high-order finite-difference schemes, Appl. Numer. Math. 12 (1993), no. 1–3, 55–87. CrossrefGoogle Scholar

  • [7]

    S. R. Chakravarthy, Euler equations-implicit schemes and boundary conditions, AIAA J. 21 (1983), no. 5, 699–706. CrossrefGoogle Scholar

  • [8]

    A. J. Chorin, A numerical method for solving incompressible viscous flow problems, J. Comput. Phys. 2 (1967), no. 1, 12–26. CrossrefGoogle Scholar

  • [9]

    T. Colonius, Modeling artificial boundary conditions for compressible flow, Annu. Rev. Fluid Mech. 36 2004, 315–345. CrossrefGoogle Scholar

  • [10]

    R. Corral, A. Escribano, F. Gisbert, A. Serrano and C. Vasco, Validation of a linear multigrid accelerated unstructured Navier–Stokes solver for the computation of turbine blades on hybrid grids, AIAA Paper 3326 (2003), no. 9. Google Scholar

  • [11]

    J. R. Dea, An experimental adaptation of Higdon-type non-reflecting boundary conditions to linear first-order systems, J. Comput. Appl. Math. 235 (2011), no. 5, 1354–1366. CrossrefWeb of ScienceGoogle Scholar

  • [12]

    D. Drikakis, P. A. Govatsos and D. E. Papantonis, A characteristic-based method for incompressible flows, Internat. J. Numer. Methods Fluids 19 (1994), no. 8, 667–685. CrossrefGoogle Scholar

  • [13]

    K. Duru and G. Kreiss, On the accuracy and stability of the perfectly matched layer in transient waveguides, J. Sci. Comput. 53 (2012), no. 3, 642–671. CrossrefWeb of ScienceGoogle Scholar

  • [14]

    B. Engquist and L. Halpern, Far field boundary conditions for computation over long time, Appl. Numer. Math. 4 (1988), no. 1, 21–45. CrossrefGoogle Scholar

  • [15]

    B. Engquist and A. Majda, Absorbing boundary conditions for numerical simulation of waves, Proc. Natl. Acad. Sci. USA 74 (1977), no. 5, 1765–1766. CrossrefGoogle Scholar

  • [16]

    B. Engquist and A. Majda, Radiation boundary conditions for acoustic and elastic wave calculations, Comm. Pure Appl. Math. 32 (1979), no. 3, 314–358. Google Scholar

  • [17]

    D. V. Gaitonde, J. Shang and J. L. Young, Practical aspects of higher-order numerical schemes for wave propagation phenomena, Internat. J. Numer. Methods Engrg. 45 (1999), no. 12, 1849–1869. CrossrefGoogle Scholar

  • [18]

    A. Gelb, Z. Jackiewicz and B. D. Welfert, Absorbing boundary conditions of the second order for the pseudospectral Chebyshev methods for wave propagation, J. Sci. Comput. 17 (2002), no. 1–4, 501–512. CrossrefGoogle Scholar

  • [19]

    M. B. Giles, Nonreflecting boundary conditions for Euler equation calculations, AIAA J. 28 (1990), no. 12, 2050–2058. CrossrefGoogle Scholar

  • [20]

    D. Givoli and B. Neta, High-order nonreflecting boundary conditions for the dispersive shallow water equations, J. Comput. Appl. Math. 158 (2003), no. 1, 49–60. CrossrefGoogle Scholar

  • [21]

    D. Givoli and B. Neta, High-order nonreflecting boundary scheme for time-dependent waves, J. Comput. Phys. 186 (2003), no. 1, 24–46. CrossrefGoogle Scholar

  • [22]

    T. Hagstrom and S. I. Hariharan, A formulation of asymptotic and exact boundary conditions using local operators, Appl. Numer. Math. 27 (1998), no. 4, 403–416. CrossrefGoogle Scholar

  • [23]

    M. Y. Hashemi and K. Zamzamian, Efficient and non-reflecting far-field boundary conditions for incompressible flow calculations, Appl. Math. Comput. 230 (2014), 248–258. Web of ScienceGoogle Scholar

  • [24]

    M. E. Hayder, F. Q. Hu and M. Y. Hussaini, Toward perfectly absorbing boundary conditions for Euler equations, AIAA J. 37 (1999), no. 8, 912–918. CrossrefGoogle Scholar

  • [25]

    G. W. Hedstrom, Nonreflecting boundary conditions for nonlinear hyperbolic systems, J. Comput. Phys. 30 (1979), no. 2, 222–237. CrossrefGoogle Scholar

  • [26]

    K. Hejranfar and R. Kamali-Moghadam, Preconditioned characteristic boundary conditions for solution of the preconditioned Euler equations at low Mach number flows, J. Comput. Phys. 231 (2012), no. 12, 4384–4402. Web of ScienceCrossrefGoogle Scholar

  • [27]

    D. Heubes, A. Bartel and M. Ehrhardt, Characteristic boundary conditions in the lattice Boltzmann method for fluid and gas dynamics, J. Comput. Appl. Math. 262 (2014), 51–61. CrossrefWeb of ScienceGoogle Scholar

  • [28]

    R. L. Higdon, Radiation boundary conditions for dispersive waves, SIAM J. Numer. Anal. 31 (1994), no. 1, 64–100. CrossrefGoogle Scholar

  • [29]

    R. S. Hirsh, Higher order accurate difference solutions of fluid mechanics problems by a compact differencing technique, J. Comput. Phys. 19 (1975), no. 1, 90–109. CrossrefGoogle Scholar

  • [30]

    K. A. Hoffmann and S. T. Chiang, Computational Fluid Dynamics. Vol. 1, Engineering Education System, Wichita, 2000. Google Scholar

  • [31]

    F. Q. Hu, Absorbing boundary conditions, Int. J. Comput. Fluid Dyn. 18 (2004), no. 6, 513–522. CrossrefGoogle Scholar

  • [32]

    M. Huet, One-dimensional characteristic boundary conditions using nonlinear invariants, J. Comput. Phys. 283 (2015), 312–328. CrossrefWeb of ScienceGoogle Scholar

  • [33]

    A. Jameson, W. Schmidt and E. Turkel, Numerical solutions of the Euler equations by finite volume methods using Runge–Kutta time-stepping schemes, AIAA Paper 1259 (1981), urlhttps://doi.org/10.2514/6.1981-1259. Google Scholar

  • [34]

    J. W. Kim and D. J. Lee, Generalized characteristic boundary conditions for computational aeroacoustics, AIAA J. 38 (2000), no. 11, 2040–2049. CrossrefGoogle Scholar

  • [35]

    S. K. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys. 103 (1992), no. 1, 16–42. CrossrefGoogle Scholar

  • [36]

    K. Mahesh, A family of high order finite difference schemes with good spectral resolution, J. Comput. Phys. 145 (1998), no. 1, 332–358. CrossrefGoogle Scholar

  • [37]

    M. Meinke, W. Schröder, E. Krause and T. Rister, A comparison of second-and sixth-order methods for large-eddy simulations, Comput. & Fluids 31 (2002), no. 4, 695–718. CrossrefGoogle Scholar

  • [38]

    W. Polifke, C. Wall and P. Moin, Partially reflecting and non-reflecting boundary conditions for simulation of compressible viscous flow, J. Comput. Phys. 213 (2006), no. 1, 437–449. CrossrefGoogle Scholar

  • [39]

    S. E. Rogers and D. Kwak, An upwind differencing scheme for the incompressible Navier–Stokes equations, Appl. Numer. Math. 8 (1991), no. 1, 43–64. CrossrefGoogle Scholar

  • [40]

    Z.-S. Sun, Y.-X. Ren, B.-L. Zha and S.-Y. Zhang, High order boundary conditions for high order finite difference schemes on curvilinear coordinates solving compressible flows, J. Sci. Comput. 65 (2015), no. 2, 790–820. Web of ScienceCrossrefGoogle Scholar

  • [41]

    K. W. Thompson, Time-dependent boundary conditions for hyperbolic systems, J. Comput. Phys. 68 (1987), no. 1, 1–24. CrossrefGoogle Scholar

  • [42]

    K. W. Thompson, Time-dependent boundary conditions for hyperbolic systems. II, J. Comput. Phys. 89 (1990), no. 2, 439–461. CrossrefGoogle Scholar

  • [43]

    S. V. Tsynkov and V. N. Vatsa, Improved treatment of external boundary conditions for three-dimensional flow computations, AIAA J. 36 (1998), no. 11, 1998–2004. CrossrefGoogle Scholar

  • [44]

    M. R. Visbal and D. V. Gaitonde, High-order-accurate methods for complex unsteady subsonic flows, AIAA J. 37 (1999), no. 10, 1231–1239. CrossrefGoogle Scholar

  • [45]

    D. L. Whitfield and L. K. Taylor, Numerical solution of the two-dimensional time-dependent incompressible Euler equations, Technical Report NASA-CR-195775, 1994. Google Scholar

About the article

Received: 2017-03-13

Revised: 2017-07-30

Accepted: 2017-08-08

Published Online: 2017-11-14

Published in Print: 2018-10-01

Citation Information: Computational Methods in Applied Mathematics, Volume 18, Issue 4, Pages 717–740, ISSN (Online) 1609-9389, ISSN (Print) 1609-4840, DOI: https://doi.org/10.1515/cmam-2017-0048.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in