[1]

S. Ambikasaran, J. Y. Li, P. K. Kitanidis and E. Darve,
Large-scale stochastic linear inversion using hierarchical matrices,
Comput. Geosci. 17 (2013), no. 6, 913–927.
CrossrefGoogle Scholar

[2]

J. Ballani and D. Kressner,
Sparse inverse covariance estimation with hierarchical matrices,
preprint (2015), http://sma.epfl.ch/~anchpcommon/publications/quic_ballani_kressner_2014.pdf.

[3]

C. Bertoglio and B. N. Khoromskij,
Low-rank quadrature-based tensor approximation of the Galerkin projected Newton/Yukawa kernels,
Comput. Phys. Commun. 183 (2012), no. 4, 904–912.
CrossrefGoogle Scholar

[4]

S. Börm and J. Garcke,
Approximating gaussian processes with ${H}^{2}$-matrices,
Proceedings of 18th European Conference on Machine Learning—ECML 2007,
Lecture Notes in Artificial Intelligence 4701,
Springer, Berlin (2007), 42–53.
Google Scholar

[5]

S. F. Boys, G. B. Cook, C. M. Reeves and I. Shavitt,
Automatic fundamental calculations of molecular structure,
Nature 178 (1956), 1207–1209.
CrossrefGoogle Scholar

[6]

D. Braess,
Nonlinear Approximation Theory,
Springer Ser. Comput. Math. 7,
Springer, Berlin, 1986.
Google Scholar

[7]

J.-P. Chilès and P. Delfiner,
Geostatistics,
Wiley Ser. Probab. Stat.,
John Wiley & Sons, New York, 1999.
Google Scholar

[8]

A. Cichocki and S. Amari,
Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications,
Wiley, New York, 2002.
Google Scholar

[9]

S. De Iaco, S. Maggio, M. Palma and D. Posa,
Toward an automatic procedure for modeling multivariate space-time data,
Comput. Geosci. 41 (2011), 10.1016/j.cageo.2011.08.008.
Google Scholar

[10]

L. De Lathauwer, B. De Moor and J. Vandewalle,
A multilinear singular value decomposition,
SIAM J. Matrix Anal. Appl. 21 (2000), no. 4, 1253–1278.
CrossrefGoogle Scholar

[11]

S. Dolgov, B. N. Khoromskij, A. Litvinenko and H. G. Matthies,
Computation of the response surface in the tensor train data format,
preprint (2014), https://arxiv.org/abs/1406.2816.

[12]

S. Dolgov, B. N. Khoromskij, A. Litvinenko and H. G. Matthies,
Polynomial chaos expansion of random coefficients and the solution of stochastic partial differential equations in the tensor train format,
SIAM/ASA J. Uncertain. Quantif. 3 (2015), no. 1, 1109–1135.
CrossrefGoogle Scholar

[13]

S. Dolgov, B. N. Khoromskij and D. Savostyanov,
Superfast Fourier transform using QTT approximation,
J. Fourier Anal. Appl. 18 (2012), no. 5, 915–953.
CrossrefGoogle Scholar

[14]

P. A. Finke, D. J. Brus, M. F. P. Bierkens, T. Hoogland, M. Knotters and F. De Vries,
Mapping groundwater dynamics using multiple sources of exhaustive high resolution data,
Geoderma 123 (2004), no. 1, 23–39.
CrossrefGoogle Scholar

[15]

R. Furrer and M. G. Genton,
Aggregation-cokriging for highly multivariate spatial data,
Biometrika 98 (2011), no. 3, 615–631.
CrossrefGoogle Scholar

[16]

I. P. Gavrilyuk, W. Hackbusch and B. N. Khoromskij,
Data-sparse approximation to a class of operator-valued functions,
Math. Comp. 74 (2005), no. 250, 681–708.
Google Scholar

[17]

I. P. Gavrilyuk, W. Hackbusch and B. N. Khoromskij,
Hierarchical tensor-product approximation to the inverse and related operators for high-dimensional elliptic problems,
Computing 74 (2005), no. 2, 131–157.
CrossrefGoogle Scholar

[18]

L. Grasedyck, D. Kressner and C. Tobler,
A literature survey of low-rank tensor approximation techniques,
GAMM-Mitt. 36 (2013), no. 1, 53–78.
CrossrefGoogle Scholar

[19]

W. Hackbusch,
A sparse matrix arithmetic based on $\mathcal{\mathscr{H}}$-matrices. I. Introduction to $\mathcal{\mathscr{H}}$-matrices,
Computing 62 (1999), no. 2, 89–108.
Google Scholar

[20]

W. Hackbusch,
Tensor Spaces and Numerical Tensor Calculus,
Springer Ser. Comput. Math. 42,
Springer, Heidelberg, 2012.
Google Scholar

[21]

W. Hackbusch,
Hierarchical Matrices: Algorithms and Analysis,
Springer Ser. Comput. Math. 49,
Springer, Heidelberg, 2015.
Google Scholar

[22]

W. Hackbusch and B. N. Khoromskij,
A sparse $\mathcal{\mathscr{H}}$-matrix arithmetic. II. Application to multi-dimensional problems,
Computing 64 (2000), no. 1, 21–47.
Google Scholar

[23]

W. Hackbusch and B. N. Khoromskij,
Low-rank Kronecker-product approximation to multi-dimensional nonlocal operators. I. Separable approximation of multi-variate functions,
Computing 76 (2006), no. 3–4, 177–202.
CrossrefGoogle Scholar

[24]

W. Hackbusch and B. N. Khoromskij,
Low-rank Kronecker-product approximation to multi-dimensional nonlocal operators. II. HKT representation of certain operators,
Computing 76 (2006), no. 3–4, 203–225.
CrossrefGoogle Scholar

[25]

M. S. Handcock and M. L. Stein,
A Bayesian analysis of Kriging,
Technometrics 35 (1993), 403–410.
CrossrefGoogle Scholar

[26]

H. Harbrecht, M. Peters and M. Siebenmorgen,
Efficient approximation of random fields for numerical applications,
Numer. Linear Algebra Appl. 22 (2015), no. 4, 596–617.
CrossrefGoogle Scholar

[27]

J. Håstad,
Tensor rank is NP-complete,
J. Algorithms 11 (1990), no. 4, 644–654.
CrossrefGoogle Scholar

[28]

M. R. Haylock, N. Hofstra, A. M. Klein Tank, E. J. Klok, P. D. Jones and M. New,
A european daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006,
J. Geophys. Res. 113 (2008), 10.1029/2008JD010201.
Google Scholar

[29]

F. L. Hitchcock,
The expression of a tensor or a polyadic as a sum of products,
J. Math. Phys. 6 (1927), 164–189.
CrossrefGoogle Scholar

[30]

A. G. Journel and C. J. Huijbregts,
Mining Geostatistics,
Academic Press, New York, 1978.
Google Scholar

[31]

V. Khoromskaia,
Computation of the Hartree–Fock exchange by the tensor-structured methods,
Comput. Methods Appl. Math. 10 (2010), no. 2, 204–218.
Google Scholar

[32]

V. Khoromskaia and B. N. Khoromskij,
Fast tensor method for summation of long-range potentials on 3D lattices with defects,
Numer. Linear Algebra Appl. 23 (2016), no. 2, 249–271.
CrossrefGoogle Scholar

[33]

B. N. Khoromskij,
Structured rank-$({R}_{1},\mathrm{\dots},{R}_{D})$ decomposition of function-related tensors in ${\mathbb{R}}^{D}$,
Comput. Methods Appl. Math. 6 (2006), no. 2, 194–220.
Google Scholar

[34]

B. N. Khoromskij,
Tensors-structured numerical methods in scientific computing: Survey on recent advances,
Chemometr. Intell. Laboratory Syst. 110 (2011), no. 1, 1–19.
Google Scholar

[35]

B. N. Khoromskij,
Tensor numerical methods for multidimensional PDEs: Theoretical analysis and initial applications,
CEMRACS 2013—Modelling and Simulation of Complex Systems: Stochastic and Deterministic Approaches,
ESAIM Proc. Surveys 48,
EDP Sci., Les Ulis (2015), 1–28.
Google Scholar

[36]

B. N. Khoromskij and V. Khoromskaia,
Low rank Tucker-type tensor approximation to classical potentials,
Cent. Eur. J. Math. 5 (2007), no. 3, 523–550.
CrossrefGoogle Scholar

[37]

B. N. Khoromskij and V. Khoromskaia,
Multigrid accelerated tensor approximation of function related multidimensional arrays,
SIAM J. Sci. Comput. 31 (2009), no. 4, 3002–3026.
CrossrefGoogle Scholar

[38]

B. N. Khoromskij, A. Litvinenko and H. G. Matthies,
Application of hierarchical matrices for computing the Karhunen–Loève expansion,
Computing 84 (2009), no. 1–2, 49–67.
CrossrefGoogle Scholar

[39]

P. K. Kitanidis,
Introduction to Geostatistics,
Cambridge University Press, Cambridge, 1997.
Google Scholar

[40]

T. G. Kolda,
Orthogonal tensor decompositions,
SIAM J. Matrix Anal. Appl. 23 (2001), no. 1, 243–255.
CrossrefGoogle Scholar

[41]

T. G. Kolda and B. W. Bader,
Tensor decompositions and applications,
SIAM Rev. 51 (2009), no. 3, 455–500.
CrossrefGoogle Scholar

[42]

J. B. Kollat, P. M. Reed and J. R. Kasprzyk,
A new epsilon-dominance hierarchical bayesian optimization algorithm for large multiobjective monitoring network design problems,
Adv. Water Res. 31 (2008), no. 5, 828–845.
CrossrefGoogle Scholar

[43]

A. Litvinenko,
HLIBCov: Parallel hierarchical matrix approximation of large covariance matrices and likelihoods with applications in parameter identification,
preprint (2017), https://arxiv.org/abs/1709.08625.

[44]

A. Litvinenko, Y. Sun, M. G. Genton and D. Keyes,
Likelihood approximation with hierarchical matrices for large spatial datasets,
preprint (2017), https://arxiv.org/abs/1709.04419.

[45]

B. Matérn,
Spatial Variation, 2nd ed.,
Lecture Notes in Statist. 36,
Springer, Berlin, 1986.
Google Scholar

[46]

G. Matheron,
The Theory of Regionalized Variables and its Applications,
Ecole de Mines, Fontainebleau, 1971.
Google Scholar

[47]

V. Minden, A. Damle, K. L. Ho and L. Ying,
Fast spatial Gaussian process maximum likelihood estimation via skeletonization factorizations,
Multiscale Model. Simul. 15 (2017), no. 4, 1584–1611.
CrossrefGoogle Scholar

[48]

W. G. Müller,
Collecting Spatial Data. Optimum Design of Experiments for Random Fields, 3rd ed.,
Contrib. Statist.,
Springer, Berlin, 2007.
Google Scholar

[49]

G. R. North, J. Wang and M. G. Genton,
Correlation models for temperature fields,
J. Climate 24 (2011), 5850–5862.
CrossrefGoogle Scholar

[50]

W. Nowak,
Measures of parameter uncertainty in geostatistical estimation and geostatistical optimal design,
Math. Geosci 42 (2010), no. 2, 199–221.
CrossrefGoogle Scholar

[51]

W. Nowak and A. Litvinenko,
Kriging and spatial design accelerated by orders of magnitude: Combining low-rank covariance approximations with FFT-techniques,
Math. Geosci. 45 (2013), no. 4, 411–435.
CrossrefGoogle Scholar

[52]

D. Nychka, S. Bandyopadhyay, D. Hammerling, F. Lindgren and S. Sain,
A multiresolution Gaussian process model for the analysis of large spatial datasets,
J. Comput. Graph. Statist. 24 (2015), no. 2, 579–599.
CrossrefGoogle Scholar

[53]

I. V. Oseledets,
Tensor-train decomposition,
SIAM J. Sci. Comput. 33 (2011), no. 5, 2295–2317.
CrossrefGoogle Scholar

[54]

J. Quiñonero Candela and C. E. Rasmussen,
A unifying view of sparse approximate Gaussian process regression,
J. Mach. Learn. Res. 6 (2005), 1939–1959.
Google Scholar

[55]

C. E. Rasmussen and C. K. I. Williams,
Gaussian Processes for Machine Learning,
Adapt. Comput. Mach. Learn.,
MIT, Cambridge, 2006.
Google Scholar

[56]

A. K. Saibaba, S. Ambikasaran, J. Yue Li, P. K. Kitanidis and E. F. Darve,
Application of hierarchical matrices to linear inverse problems in geostatistics,
Oil Gas Sci. Technol. Rev. IFP Energ. Nouv. 67 (2012), no. 5, 857–875.
CrossrefGoogle Scholar

[57]

U. Schollwöck,
The density-matrix renormalization group in the age of matrix product states,
Ann. Physics 326 (2011), no. 1, 96–192.
CrossrefGoogle Scholar

[58]

R. Shah and P. Reed,
Comparative analysis of multiobjective evolutionary algorithms for random and correlated instances of multiobjective *d*-dimensional knapsack problems,
European J. Oper. Res. 211 (2011), no. 3, 466–479.
CrossrefGoogle Scholar

[59]

A. K. Smilde, R. Bro and P. Geladi,
Multi-Way Analysis with Applications in the Chemical Sciences,
Wiley, New York, 2004.
Google Scholar

[60]

G. Spöck and J. Pilz,
Spatial sampling design and covariance-robust minimax prediction based on convex design ideas,
Stoch. Environmental Res. Risk Assess. 24 (2010), 463–482.
CrossrefGoogle Scholar

[61]

M. L. Stein, J. Chen and M. Anitescu,
Difference filter preconditioning for large covariance matrices,
SIAM J. Matrix Anal. Appl. 33 (2012), no. 1, 52–72.
CrossrefGoogle Scholar

[62]

M. L. Stein, Z. Chi and L. J. Welty,
Approximating likelihoods for large spatial data sets,
J. R. Stat. Soc. Ser. B Stat. Methodol. 66 (2004), no. 2, 275–296.
CrossrefGoogle Scholar

[63]

F. Stenger,
Numerical Methods Based on Sinc and Analytic Functions,
Springer Ser. Comput. Math. 20,
Springer, New York, 1993.
Google Scholar

[64]

Y. Sun and M. L. Stein,
Statistically and computationally efficient estimating equations for large spatial datasets,
J. Comput. Graph. Statist. 25 (2016), no. 1, 187–208.
CrossrefGoogle Scholar

[65]

L. R. Tucker,
Some mathematical notes on three-mode factor analysis,
Psychometrika 31 (1966), 279–311.
CrossrefGoogle Scholar

[66]

S. M. Wesson and G. G. S. Pegram,
Radar rainfall image repair techniques,
Hydrol. Earth Syst. Sci. 8 (2004), no. 2, 8220–8234.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.