[1]

S. Barnett,
Polynomials and Linear Control Systems,
Monogr. Textb. Pure Appl. Math. 77,
Marcel Dekker, New York, 1983.
Google Scholar

[2]

K. Batselier, P. Dreesen and B. De Moor,
On the null spaces of the Macaulay matrix,
Linear Algebra Appl. 460 (2014), 259–289.
Web of ScienceCrossrefGoogle Scholar

[3]

G. Boutry, M. Elad, G. H. Golub and P. Milanfar,
The generalized eigenvalue problem for nonsquare pencils using a minimal perturbation approach,
SIAM J. Matrix Anal. Appl. 27 (2005), no. 2, 582–601.
CrossrefGoogle Scholar

[4]

D. A. Cox, J. Little and D. O’Shea,
Using Algebraic Geometry, 2nd ed.,
Grad. Texts in Math. 185,
Springer, New York, 2005.
Google Scholar

[5]

S. Das and A. Neumaier,
Solving overdetermined eigenvalue problems,
SIAM J. Sci. Comput. 35 (2013), no. 2, A541–A560.
Google Scholar

[6]

B. De Moor,
The singular value decomposition and long and short spaces of noisy matrices,
IEEE Trans. Signal Process. 41 (1993), 2826–2838.
CrossrefGoogle Scholar

[7]

F. De Terán, F. M. Dopico and J. Pérez,
Backward stability of polynomial root-finding using Fiedler companion matrices,
IMA J. Numer. Anal. 36 (2016), no. 1, 133–173.
Web of ScienceGoogle Scholar

[8]

A. Dickenstein and I. Z. Emiris,
Solving Polynomial Equations,
Algorithms Comput. Math. 14,
Springer, Berlin, 2005.
Google Scholar

[9]

P. Dreesen,
Back to the roots - polynomial system solving using linear algebra,
PhD Thesis, KU Leuven, Belgium, 2013.
Google Scholar

[10]

A. Edelman and H. Murakami,
Polynomial roots from companion matrix eigenvalues,
Math. Comp. 64 (1995), no. 210, 763–776.
CrossrefGoogle Scholar

[11]

G. H. Golub and C. F. Van Loan,
Matrix Computations, 3rd ed.,
Johns Hopkins University, Baltimore, 1996.
Google Scholar

[12]

C. Gotsman and S. Toledo,
On the computation of null spaces of sparse rectangular matrices,
SIAM J. Matrix Anal. Appl. 30 (2008), no. 2, 445–463.
CrossrefWeb of ScienceGoogle Scholar

[13]

G. Halikias, G. Galanis, N. Karcanias and E. Milonidis,
Nearest common root of polynomials, approximate greatest common divisor and the structured singular value,
IMA J. Math. Control Inform. 30 (2013), no. 4, 423–442.
CrossrefGoogle Scholar

[14]

L. S. Jennings and M. R. Osborne,
Generalized eigenvalue problems for rectangular matrices,
J. Inst. Math. Appl. 20 (1977), no. 4, 443–458.
CrossrefGoogle Scholar

[15]

N. Karcanias, S. Fatouros, M. Mitrouli and G. H. Halikias,
Approximate greatest common divisor of many polynomials, generalised resultants, and strength of approximation,
Comput. Math. Appl. 51 (2006), no. 12, 1817–1830.
CrossrefGoogle Scholar

[16]

D. Lazard,
Résolution des systèmes d’équations algébriques,
Theoret. Comput. Sci. 15 (1981), no. 1, 77–110.
Google Scholar

[17]

D. Lazard,
Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations,
Computer Algebra (London 1983),
Lecture Notes in Comput. Sci. 162,
Springer, Berlin (1983), 146–156.
Google Scholar

[18]

F. Li, R. J. Vaccaro and D. W. Tufts,
Performance analysis of the state-space realization (TAM) and ESPRIT algorithms for DOA estimation,
IEEE Trans. Antennas and Propagation 39 (1991), 418–423.
CrossrefGoogle Scholar

[19]

F. S. Macaulay,
Some formulae in elimination,
Proc. Lond. Math. Soc. 35 (1903), 3–27.
Google Scholar

[20]

F. S. Macaulay,
The Algebraic Theory of Modular Systems,
Cambridge Math. Lib.,
Cambridge University Press, Cambridge, 1994.
Google Scholar

[21]

I. Markovsky, A. Fazzi and N. Guglielmi,
Applications of polynomial common factor computation in signal processing,
Technical Report, Vrije Universiteit Brussel, http://homepages.vub.ac.be/~imarkovs/publications/ica18a.pdf.

[22]

A. M. Ostrowski,
On the convergence of the Rayleigh quotient iteration for the computation of the characteristic roots and vectors. V. Usual Rayleigh
quotient for non-Hermitian matrices and linear elementary divisors,
Arch. Ration. Mech. Anal. 3 (1959), 472–481.
CrossrefGoogle Scholar

[23]

V. Y. Pan and A.-L. Zheng,
New progress in real and complex polynomial root-finding,
Comput. Math. Appl. 61 (2011), no. 5, 1305–1334.
Web of ScienceCrossrefGoogle Scholar

[24]

J. W. Polderman and J. C. Willems,
Introduction to Mathematical Systems Theory,
Texts Appl. Math. 26,
Springer, New York, 1998.
Google Scholar

[25]

R. Roy and T. Kailath,
ESPRIT-estimation of signal parameters via rotation invariance techniques,
IEEE Trans. Acoust. Speech Signal Process. 37 (1989), 984–995.
CrossrefGoogle Scholar

[26]

R. Schaback,
Convergence analysis of the general Gauss–Newton algorithm,
Numer. Math. 46 (1985), no. 2, 281–309.
CrossrefGoogle Scholar

[27]

H. Schwetlick and U. Schnabel,
Iterative computation of the smallest singular value and the corresponding singular vectors of a matrix,
Linear Algebra Appl. 371 (2003), 1–30.
CrossrefGoogle Scholar

[28]

E. Serpedin and G. B. Giannakis,
A simple proof of a known blind channel identifiability result,
IEEE Trans. Signal Process. 47 (1999), 591–593.
CrossrefGoogle Scholar

[29]

H. J. Stetter,
Matrix eigenproblems are at the heart of polynomial system solving,
ACM SIGSAM Bull. 30 (1996), 22–25.
CrossrefGoogle Scholar

[30]

H. J. Stetter,
Numerical Algebra,
Society for Industrial and Applied Mathematics, Philadelphia, 2004.
Google Scholar

[31]

G. W. Stewart,
Perturbation theory for rectangular matrix pencils,
Linear Algebra Appl. 208/209 (1994), 297–301.
CrossrefGoogle Scholar

[32]

G. W. Stewart and J. G. Sun,
Matrix Perturbation Theory,
Academic Press, Boston, 1990.
Google Scholar

[33]

J. J. Sylvester,
On a theory of syzygetic relations of two rational integral functions, comprising an application to the theory of Sturm’s function and that of the greatest algebraical common measure,
Philos. Trans. R. Soc. Lond. 143 (1853), 407–548.
CrossrefGoogle Scholar

[34]

L. N. Trefethen and D. Bau, III,
Numerical Linear Algebra,
Society for Industrial and Applied Mathematics, Philadelphia, 1997.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.