Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Computational Methods in Applied Mathematics

Editor-in-Chief: Carstensen, Carsten

Managing Editor: Matus, Piotr

IMPACT FACTOR 2018: 1.218
5-year IMPACT FACTOR: 1.411

CiteScore 2018: 1.42

SCImago Journal Rank (SJR) 2018: 0.947
Source Normalized Impact per Paper (SNIP) 2018: 0.939

Mathematical Citation Quotient (MCQ) 2017: 0.76

See all formats and pricing
More options …
Volume 19, Issue 3


A Non-conforming Saddle Point Least Squares Approach for an Elliptic Interface Problem

Constantin Bacuta
  • Corresponding author
  • Department of Mathematics, University of Delaware, 501 Ewing Hall, Newark, Delaware 19716, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jacob Jacavage
Published Online: 2019-04-13 | DOI: https://doi.org/10.1515/cmam-2018-0202


We present a non-conforming least squares method for approximating solutions of second-order elliptic problems with discontinuous coefficients. The method is based on a general Saddle Point Least Squares (SPLS) method introduced in previous work based on conforming discrete spaces. The SPLS method has the advantage that a discrete inf-sup condition is automatically satisfied for standard choices of test and trial spaces. We explore the SPLS method for non-conforming finite element trial spaces which allow higher-order approximation of the fluxes. For the proposed iterative solvers, inversion at each step requires bases only for the test spaces. We focus on using projection trial spaces with local projections that are easy to compute. The choice of the local projections for the trial space can be combined with classical gradient recovery techniques to lead to quasi-optimal approximations of the global flux. Numerical results for 2D and 3D domains are included to support the proposed method.

Keywords: Least Squares; Saddle Point Systems; Mixed Methods; Multilevel Methods; Uzawa Type Algorithms; Conjugate Gradient; Cascadic Algorithm; Dual DPG

MSC 2010: 74S05; 74B05; 65N22; 65N55


  • [1]

    M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis, Pure Appl. Math. (New York), Wiley-Interscience, New York, 2000. Google Scholar

  • [2]

    A. Aziz and I. Babuška, Survey lectures on mathematical foundations of the finite element method, Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Academic Press, New York (1972), 1–359. Google Scholar

  • [3]

    I. Babuška, G. Caloz and J. E. Osborn, Special finite element methods for a class of second order elliptic problems with rough coefficients, SIAM J. Numer. Anal. 31 (1994), no. 4, 945–981. CrossrefGoogle Scholar

  • [4]

    C. Bacuta, Schur complements on Hilbert spaces and saddle point systems, J. Comput. Appl. Math. 225 (2009), no. 2, 581–593. Web of ScienceCrossrefGoogle Scholar

  • [5]

    C. Bacuta, Cascadic multilevel algorithms for symmetric saddle point systems, Comput. Math. Appl. 67 (2014), no. 10, 1905–1913. Web of ScienceCrossrefGoogle Scholar

  • [6]

    C. Bacuta and J. Jacavage, Saddle point least squares preconditioning of mixed methods, Comput. Math. Appl. 77 (2019), no. 5, 1396–1407. Web of ScienceCrossrefGoogle Scholar

  • [7]

    C. Bacuta and P. Monk, Multilevel discretization of symmetric saddle point systems without the discrete LBB condition, Appl. Numer. Math. 62 (2012), no. 6, 667–681. CrossrefWeb of ScienceGoogle Scholar

  • [8]

    C. Bacuta, V. Nistor and L. T. Zikatanov, Improving the rate of convergence of high-order finite elements on polygons and domains with cusps, Numer. Math. 100 (2005), no. 2, 165–184. CrossrefGoogle Scholar

  • [9]

    C. Bacuta, V. Nistor and L. T. Zikatanov, Improving the rate of convergence of high-order finite elements on polyhedra. I. A priori estimates, Numer. Funct. Anal. Optim. 26 (2005), no. 6, 613–639. CrossrefGoogle Scholar

  • [10]

    C. Bacuta and K. Qirko, A saddle point least squares approach to mixed methods, Comput. Math. Appl. 70 (2015), no. 12, 2920–2932. CrossrefWeb of ScienceGoogle Scholar

  • [11]

    C. Bacuta and K. Qirko, A saddle point least squares approach for primal mixed formulations of second order PDEs, Comput. Math. Appl. 73 (2017), no. 2, 173–186. Web of ScienceCrossrefGoogle Scholar

  • [12]

    N. Bakhvalov and G. Panasenko, Homogenisation: Averaging Processes in Periodic Media, Math. Appl. (Soviet Series) 36, Kluwer Academic, Dordrecht, 1989. Google Scholar

  • [13]

    R. E. Bank and J. Xu, Asymptotically exact a posteriori error estimators. II. General unstructured grids, SIAM J. Numer. Anal. 41 (2003), no. 6, 2313–2332. CrossrefGoogle Scholar

  • [14]

    C. Bernardi and R. Verfürth, Adaptive finite element methods for elliptic equations with non-smooth coefficients, Numer. Math. 85 (2000), no. 4, 579–608. CrossrefGoogle Scholar

  • [15]

    D. Braess, Finite Elements. Theory, Fast Solvers, and Applications in Solid Mechanics, Cambridge University, Cambridge, 1997. Google Scholar

  • [16]

    C. Carstensen, M. Eigel, R. H. W. Hoppe and C. Löbhard, A review of unified a posteriori finite element error control, Numer. Math. Theory Methods Appl. 5 (2012), no. 4, 509–558. Web of ScienceCrossrefGoogle Scholar

  • [17]

    A. Cohen, W. Dahmen and G. Welper, Adaptivity and variational stabilization for convection-diffusion equations, ESAIM Math. Model. Numer. Anal. 46 (2012), no. 5, 1247–1273. CrossrefGoogle Scholar

  • [18]

    L. Demkowicz and J. Gopalakrishnan, A class of discontinuous Petrov–Galerkin methods. Part I: The transport equation, Comput. Methods Appl. Mech. Engrg. 199 (2010), no. 23–24, 1558–1572. CrossrefGoogle Scholar

  • [19]

    L. Demkowicz and J. Gopalakrishnan, A primal DPG method without a first-order reformulation, Comput. Math. Appl. 66 (2013), no. 6, 1058–1064. CrossrefWeb of ScienceGoogle Scholar

  • [20]

    Y. Efendiev and T. Hou, Multiscale finite element methods for porous media flows and their applications, Appl. Numer. Math. 57 (2007), no. 5–7, 577–596. Web of ScienceCrossrefGoogle Scholar

  • [21]

    D. Gueribiz, F. Jacquemin and S. Fréour, A moisture diffusion coupled model for composite materials, Eur. J. Mech. A Solids 42 (2013), 81–89. Web of ScienceCrossrefGoogle Scholar

  • [22]

    A. Hansbo and P. Hansbo, An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems, Comput. Methods Appl. Mech. Engrg. 191 (2002), no. 47–48, 5537–5552. CrossrefGoogle Scholar

  • [23]

    B. C. Khoo, Z. Li and P. Lin, Interface Problems and Methods in Biological and Physical Flows, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. 17, World Scientific, Hackensack, 2009. Google Scholar

  • [24]

    A. Knyazev and O. Widlund, Lavrentiev regularization + Ritz approximation = uniform finite element error estimates for differential equations with rough coefficients, Math. Comp. 72 (2003), no. 241, 17–40. Google Scholar

  • [25]

    L. Mu, J. Wang and X. Ye, A weak Galerkin generalized multiscale finite element method, J. Comput. Appl. Math. 305 (2016), 68–81. CrossrefWeb of ScienceGoogle Scholar

  • [26]

    M. Petzoldt, Regularity and error estimators for elliptic problems with discontinuous coefficients, PhD thesis, Freie Universität Berlin, 2001. Google Scholar

  • [27]

    R. Verfürth, A combined conjugate gradient-multigrid algorithm for the numerical solution of the Stokes problem, IMA J. Numer. Anal. 4 (1984), no. 4, 441–455. CrossrefGoogle Scholar

About the article

Received: 2017-12-19

Revised: 2019-01-14

Accepted: 2019-03-17

Published Online: 2019-04-13

Published in Print: 2019-07-01

Funding Source: National Science Foundation

Award identifier / Grant number: DMS-1522454

The work was supported by NSF, DMS-1522454.

Citation Information: Computational Methods in Applied Mathematics, Volume 19, Issue 3, Pages 399–414, ISSN (Online) 1609-9389, ISSN (Print) 1609-4840, DOI: https://doi.org/10.1515/cmam-2018-0202.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in