Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Computational Methods in Applied Mathematics

Editor-in-Chief: Carstensen, Carsten

Managing Editor: Matus, Piotr


IMPACT FACTOR 2018: 1.218
5-year IMPACT FACTOR: 1.411

CiteScore 2018: 1.42

SCImago Journal Rank (SJR) 2018: 0.947
Source Normalized Impact per Paper (SNIP) 2018: 0.939

Mathematical Citation Quotient (MCQ) 2018: 1.22

Online
ISSN
1609-9389
See all formats and pricing
More options …
Volume 19, Issue 3

Issues

The Discrete Steklov–Poincaré Operator Using Algebraic Dual Polynomials

Yi ZhangORCID iD: https://orcid.org/0000-0003-4208-716X / Varun Jain
  • Department of Aerodynamics, Wind Energy, Flight Performance and Propulsion, Delft University of Technology, P.O. Box 5058, 2600 GB Delft, The Netherlands
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Artur Palha
  • Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marc Gerritsma
  • Department of Aerodynamics, Wind Energy, Flight Performance and Propulsion, Delft University of Technology, P.O. Box 5058, 2600 GB Delft, The Netherlands
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-05-07 | DOI: https://doi.org/10.1515/cmam-2018-0208

Abstract

In this paper, we will use algebraic dual polynomials to set up a discrete Steklov–Poincaré operator for the mixed formulation of the Poisson problem. The method will be applied in curvilinear coordinates and to a test problem which contains a singularity. Exponential convergence of the trace variable in H1/2-norm will be shown.

Keywords: Steklov–Poincaré Operator; Hybrid Finite Element Method; Spectral Elements,Domain Decomposition; Dual Approximation in Trace Spaces

MSC 2010: 65N30; 65N35; 76M10; 76M25

References

  • [1]

    V. I. Agoshkov, Poincaré–Steklov’s operators and domain decomposition methods in finite-dimensional spaces, First International Symposium on Domain Decomposition Methods for Partial Differential Equations (Paris 1987), SIAM, Philadelphia (1988), 73–112. Google Scholar

  • [2]

    D. N. Arnold, F. Brezzi, B. Cockburn and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001/02), no. 5, 1749–1779. Google Scholar

  • [3]

    I. Babuška, J. T. Oden and J. K. Lee, Mixed-hybrid finite element approximations of second-order elliptic boundary-value problems, Comput. Methods Appl. Mech. Engrg. 11 (1977), no. 2, 175–206. CrossrefGoogle Scholar

  • [4]

    P. Bochev and M. Gerritsma, A spectral mimetic least-squares method, Comput. Math. Appl. 68 (2014), no. 11, 1480–1502. Web of ScienceCrossrefGoogle Scholar

  • [5]

    D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications, Springer Ser. Comput. Math. 44, Springer, Heidelberg, 2013. Google Scholar

  • [6]

    C. Carstensen, L. Demkowicz and J. Gopalakrishnan, Breaking spaces and forms for the DPG method and applications including Maxwell equations, Comput. Math. Appl. 72 (2016), no. 3, 494–522. Web of ScienceCrossrefGoogle Scholar

  • [7]

    B. Cockburn and J. Gopalakrishnan, A characterization of hybridized mixed methods for second order elliptic problems, SIAM J. Numer. Anal. 42 (2004), no. 1, 283–301. CrossrefGoogle Scholar

  • [8]

    B. Cockburn, J. Gopalakrishnan and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal. 47 (2009), no. 2, 1319–1365. Web of ScienceCrossrefGoogle Scholar

  • [9]

    D. E. Crabtree and E. V. Haynsworth, An identity for the Schur complement of a matrix, Proc. Amer. Math. Soc. 22 (1969), 364–366. CrossrefGoogle Scholar

  • [10]

    D. De Klerk, D. Rixen and S. Voormeeren, General framework for dynamic substructuring: History, review, and classification of techniques, AIAA Journal 46 (2008), no. 5, 1169–1181. Web of ScienceCrossrefGoogle Scholar

  • [11]

    L. Demkowicz and J. Gopalakrishnan, A class of discontinuous Petrov–Galerkin methods. Part I: The transport equation, Comput. Methods Appl. Mech. Engrg. 199 (2010), no. 23–24, 1558–1572. CrossrefGoogle Scholar

  • [12]

    L. Demkowicz and J. Gopalakrishnan, A class of discontinuous Petrov-Galerkin methods. II. Optimal test functions, Numer. Methods Partial Differential Equations 27 (2011), no. 1, 70–105. Web of ScienceCrossrefGoogle Scholar

  • [13]

    L. Demkowicz and J. Gopalakrishnan, Analysis of the DPG method for the Poisson equation, SIAM J. Numer. Anal. 49 (2011), no. 5, 1788–1809. Web of ScienceCrossrefGoogle Scholar

  • [14]

    B. Fraeijs de Veubeke, Displacement and equilibrium models in the finite element method, Internat. J. Numer. Methods Engrg. 52 (2001), no. 3, 287–342. Google Scholar

  • [15]

    M. Gerritsma, Edge functions for spectral element methods, Spectral and High Order Methods for Partial Differential Equations, Lect. Notes Comput. Sci. Eng. 76, Springer, Heidelberg (2011), 199–207. Google Scholar

  • [16]

    E. V. Haynsworth, Reduction of a matrix using properties of the Schur complement, Linear Algebra Appl. 3 (1970), 23–29. CrossrefGoogle Scholar

  • [17]

    V. Jain, Y. Zhang, A. Palha and M. Gerritsma, Construction and application of algebraic dual polynomial representations for finite element methods, (2017), https://arxiv.org/abs/1712.09472.

  • [18]

    A. Klawonn, O. B. Widlund and M. Dryja, Dual-primal FETI methods for three-dimensional elliptic problems with heterogeneous coefficients, SIAM J. Numer. Anal. 40 (2002), no. 1, 159–179. CrossrefGoogle Scholar

  • [19]

    J. Kreeft and M. Gerritsma, Mixed mimetic spectral element method for Stokes flow: A pointwise divergence-free solution, J. Comput. Phys. 240 (2013), 284–309. CrossrefWeb of ScienceGoogle Scholar

  • [20]

    J. Moitinho de Almeida and E. Maunder, Equilibrium Finite Element Formulations, John Wiley & Sons, New York, 2017. Google Scholar

  • [21]

    J. T. Oden and L. F. Demkowicz, Applied Functional Analysis, 2nd ed., CRC Press, Boca Raton, 2010. Google Scholar

  • [22]

    A. Palha, P. P. Rebelo, R. Hiemstra, J. Kreeft and M. Gerritsma, Physics-compatible discretization techniques on single and dual grids, with application to the Poisson equation of volume forms, J. Comput. Phys. 257 (2014), 1394–1422. CrossrefWeb of ScienceGoogle Scholar

  • [23]

    T. H. H. Pian and C.-C. Wu, Hybrid and Incompatible Finite Element Methods, CRC Ser. Mod. Mech. Math. 4, Chapman & Hall/CRC, Boca Raton, 2006. Google Scholar

  • [24]

    A. Quarteroni and A. Valli, Theory and application of Steklov–Poincaré operators for boundary-value problems, Applied and Industrial Mathematics (Venice 1989), Math. Appl. 56, Kluwer Academic, Dordrecht (1991), 179–203. Google Scholar

  • [25]

    A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer Ser. Comput. Math. 23, Springer, Berlin, 1994. Google Scholar

  • [26]

    E. Wilson, The static condensation algorithm, Internat. J. Numer. Methods Engrg. 8 (1974), 198–203. CrossrefGoogle Scholar

About the article

Received: 2018-08-13

Accepted: 2019-03-05

Published Online: 2019-05-07

Published in Print: 2019-07-01


Citation Information: Computational Methods in Applied Mathematics, Volume 19, Issue 3, Pages 645–661, ISSN (Online) 1609-9389, ISSN (Print) 1609-4840, DOI: https://doi.org/10.1515/cmam-2018-0208.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Fleurianne Bertrand, Leszek Demkowicz, Jay Gopalakrishnan, and Norbert Heuer
Computational Methods in Applied Mathematics, 2019, Volume 19, Number 3, Page 395

Comments (0)

Please log in or register to comment.
Log in