[1]

N. Ahmed, A. Linke and C. Merdon,
Towards pressure-robust mixed methods for the incompressible Navier–Stokes equations,
Finite Volumes for Complex Applications VIII—Methods and Theoretical Aspects,
Springer Proc. Math. Stat. 199,
Springer, Cham (2017), 351–359.
Google Scholar

[2]

D. N. Arnold, F. Brezzi and M. Fortin,
A stable finite element for the Stokes equations,
Calcolo 21 (1984), no. 4, 337–344.
CrossrefGoogle Scholar

[3]

I. Babuška and M. Suri,
Locking effects in the finite element approximation of elasticity problems,
Numer. Math. 62 (1992), no. 4, 439–463.
CrossrefGoogle Scholar

[4]

I. Babuška and M. Suri,
On locking and robustness in the finite element method,
SIAM J. Numer. Anal. 29 (1992), no. 5, 1261–1293.
CrossrefGoogle Scholar

[5]

C. Bernardi and G. Raugel,
Analysis of some finite elements for the Stokes problem,
Math. Comp. 44 (1985), no. 169, 71–79.
CrossrefGoogle Scholar

[6]

J. Bonelle and A. Ern,
Analysis of compatible discrete operator schemes for the Stokes equations on polyhedral meshes,
IMA J. Numer. Anal. 35 (2015), no. 4, 1672–1697.
Web of ScienceCrossrefGoogle Scholar

[7]

C. Brennecke, A. Linke, C. Merdon and J. Schöberl,
Optimal and pressure-independent ${L}^{2}$ velocity error estimates for a modified Crouzeix–Raviart Stokes element with BDM reconstructions,
J. Comput. Math. 33 (2015), no. 2, 191–208.
Web of ScienceGoogle Scholar

[8]

F. Brezzi and M. Fortin,
Mixed and Hybrid Finite Element Methods,
Springer Ser. Comput. Math. 15,
Springer, New York, 1991.
Google Scholar

[9]

M. A. Case, V. J. Ervin, A. Linke and L. G. Rebholz,
A connection between Scott–Vogelius and grad-div stabilized Taylor–Hood FE approximations of the Navier–Stokes equations,
SIAM J. Numer. Anal. 49 (2011), no. 4, 1461–1481.
CrossrefWeb of ScienceGoogle Scholar

[10]

R. Codina,
Numerical solution of the incompressible Navier–Stokes equations with Coriolis forces based on the discretization of the total time derivative,
J. Comput. Phys. 148 (1999), no. 2, 467–496.
CrossrefGoogle Scholar

[11]

M. Crouzeix and P.-A. Raviart,
Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I,
Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7 (1973), no. R-3, 33–75.
Google Scholar

[12]

D. A. Di Pietro, A. Ern, A. Linke and F. Schieweck,
A discontinuous skeletal method for the viscosity-dependent Stokes problem,
Comput. Methods Appl. Mech. Engrg. 306 (2016), 175–195.
CrossrefGoogle Scholar

[13]

O. Dorok, W. Grambow and L. Tobiska,
Aspects of finite element discretizations for solving the Boussinesq approximation of the Navier–Stokes equations,
Numerical Methods for the Navier–Stokes Equations,
Notes on Numer. Fluid Mech. 47,
Vieweg+Teubner, Wiesbaden (1994), 50–61.
Google Scholar

[14]

M. Fortin and A. Fortin,
Newer and newer elements for incompressible flows,
Finite Elements Fluids 6 (1985), 171–187.
Google Scholar

[15]

L. P. Franca and T. J. R. Hughes,
Two classes of mixed finite element methods,
Comput. Methods Appl. Mech. Engrg. 69 (1988), no. 1, 89–129.
CrossrefGoogle Scholar

[16]

P. Frolkovic,
Consistent velocity approximation for density driven flow and transport,
Advanced Computational Methods in Engineering. Part 2,
Shaker Publishing, Maastricht (1998), 603–611.
Google Scholar

[17]

K. J. Galvin, A. Linke, L. G. Rebholz and N. E. Wilson,
Stabilizing poor mass conservation in incompressible flow problems with large irrotational forcing and application to thermal convection,
Comput. Methods Appl. Mech. Engrg. 237/240 (2012), 166–176.
CrossrefGoogle Scholar

[18]

S. Ganesan and V. John,
Pressure separation—A technique for improving the velocity error in finite element discretisations of the Navier–Stokes equations,
Appl. Math. Comput. 165 (2005), no. 2, 275–290.
Google Scholar

[19]

S. Ganesan, G. Matthies and L. Tobiska,
On spurious velocities in incompressible flow problems with interfaces,
Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 7, 1193–1202.
CrossrefGoogle Scholar

[20]

J.-F. Gerbeau, C. Le Bris and M. Bercovier,
Spurious velocities in the steady flow of an incompressible fluid subjected to external forces,
Internat. J. Numer. Methods Fluids 25 (1997), no. 6, 679–695.
CrossrefGoogle Scholar

[21]

V. Girault and P.-A. Raviart,
Finite Element Methods for Navier–Stokes Equations,
Springer Ser. Comput. Math.5,
Springer, Berlin, 1986.
Google Scholar

[22]

P. M. Gresho, R. L. Lee, S. T. Chan and J. M. Leone,
A new finite element for incompressible or Boussinesq fluids,
International Conference on Finite Elements in Flow Problems. Volume 1 (Banff 1980),
University of Calgary, Calgary (1981), 204–215.
Google Scholar

[23]

J. Guzmán and M. Neilan,
Conforming and divergence-free Stokes elements in three dimensions,
IMA J. Numer. Anal. 34 (2014), no. 4, 1489–1508.
Web of ScienceCrossrefGoogle Scholar

[24]

J. Guzmán and M. Neilan,
Conforming and divergence-free Stokes elements on general triangular meshes,
Math. Comp. 83 (2014), no. 285, 15–36.
Google Scholar

[25]

E. Jenkins, V. John, A. Linke and L. Rebholz,
On the parameter choice in grad-div stabilization for the Stokes equations,
Adv. Comput. Math. 40 (2014), no. 2, 491–516.
Web of ScienceCrossrefGoogle Scholar

[26]

V. John,
Finite Element Methods for Incompressible Flow Problems,
Springer Ser. Comput. Math. 51,
Springer, Cham, 2016.
Google Scholar

[27]

V. John, A. Linke, C. Merdon, M. Neilan and L. G. Rebholz,
On the divergence constraint in mixed finite element methods for incompressible flows,
SIAM Rev. 59 (2017), no. 3, 492–544.
CrossrefWeb of ScienceGoogle Scholar

[28]

P. L. Lederer, A. Linke, C. Merdon and J. Schöberl,
Divergence-free reconstruction operators for pressure-robust Stokes discretizations with continuous pressure finite elements,
SIAM J. Numer. Anal. 55 (2017), no. 3, 1291–1314.
CrossrefWeb of ScienceGoogle Scholar

[29]

C. Lehrenfeld and J. Schöberl,
High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows,
Comput. Methods Appl. Mech. Engrg. 307 (2016), 339–361.
CrossrefGoogle Scholar

[30]

A. Linke,
Collision in a cross-shaped domain—A steady 2D Navier–Stokes example demonstrating the importance of mass conservation in CFD,
Comput. Methods Appl. Mech. Engrg. 198 (2009), no. 41–44, 3278–3286.
CrossrefGoogle Scholar

[31]

A. Linke,
A divergence-free velocity reconstruction for incompressible flows,
C. R. Math. Acad. Sci. Paris 350 (2012), no. 17–18, 837–840.
CrossrefGoogle Scholar

[32]

A. Linke,
On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime,
Comput. Methods Appl. Mech. Engrg. 268 (2014), 782–800.
CrossrefGoogle Scholar

[33]

A. Linke, G. Matthies and L. Tobiska,
Robust arbitrary order mixed finite element methods for the incompressible Stokes equations with pressure independent velocity errors,
ESAIM Math. Model. Numer. Anal. 50 (2016), no. 1, 289–309.
CrossrefWeb of ScienceGoogle Scholar

[34]

A. Linke and C. Merdon,
On velocity errors due to irrotational forces in the Navier–Stokes momentum balance,
J. Comput. Phys. 313 (2016), 654–661.
CrossrefWeb of ScienceGoogle Scholar

[35]

A. Linke and C. Merdon,
Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier–Stokes equations,
Comput. Methods Appl. Mech. Engrg. 311 (2016), 304–326.
CrossrefGoogle Scholar

[36]

A. Linke, C. Merdon and W. Wollner,
Optimal ${L}^{2}$ velocity error estimate for a modified pressure-robust Crouzeix–Raviart Stokes element,
IMA J. Numer. Anal. 37 (2017), no. 1, 354–374.
Web of ScienceGoogle Scholar

[37]

M. Neilan,
Discrete and conforming smooth de Rham complexes in three dimensions,
Math. Comp. 84 (2015), no. 295, 2059–2081.
CrossrefGoogle Scholar

[38]

M. A. Olshanskii and A. Reusken,
Grad-div stabilization for Stokes equations,
Math. Comp. 73 (2004), no. 248, 1699–1718.
Google Scholar

[39]

D. Pelletier, A. Fortin and R. Camarero,
Are FEM solutions of incompressible flows really incompressible? (or how simple flows can cause headaches!),
Internat. J. Numer. Methods Fluids 9 (1989), no. 1, 99–112.
CrossrefGoogle Scholar

[40]

J. Qin,
On the Convergence of Some Low Order Mixed Finite Elements for Incompressible Fluids,
ProQuest LLC, Ann Arbor, 1994;
Ph.D. thesis, The Pennsylvania State University, 1994.
Google Scholar

[41]

J. Qin and S. Zhang,
Stability and approximability of the ${\mathcal{\mathcal{P}}}_{1}$-${\mathcal{\mathcal{P}}}_{0}$ element for Stokes equations,
Internat. J. Numer. Methods Fluids 54 (2007), no. 5, 497–515.
Google Scholar

[42]

F. Schieweck,
Parallele Lösung der Navier–Stokes-Gleichungen,
Habilitation, University of Magdeburg, Magdeburg, 1997.
Google Scholar

[43]

H. Sohr,
The Navier–Stokes Equations,
Mod. Birkhäuser Class.,
Birkhäuser, Basel, 2001.
Google Scholar

[44]

R. Stenberg,
Error analysis of some finite element methods for the Stokes problem,
Math. Comp. 54 (1990), no. 190, 495–508.
CrossrefGoogle Scholar

[45]

R. W. Thatcher and D. Silvester,
A locally mass conserving quadratic velocity, linear pressure element,
Numerical Analysis Report No. 147, Manchester University/UMIST, 1987.
Google Scholar

[46]

D. M. Tidd, R. W. Thatcher and A. Kaye,
The free surface flow of Newtonian and non-Newtonian fluids trapped by surface tension,
Internat. J. Numer. Methods Fluids 8 (1988), no. 9, 1011–1027.
CrossrefGoogle Scholar

[47]

S. Zhang,
A new family of stable mixed finite elements for the 3D Stokes equations,
Math. Comp. 74 (2005), no. 250, 543–554.
Google Scholar

[48]

S. Zhang,
A family of ${Q}_{k+1,k}\times {Q}_{k,k+1}$ divergence-free finite elements on rectangular grids,
SIAM J. Numer. Anal. 47 (2009), no. 3, 2090–2107.
Google Scholar

[49]

S. Zhang,
Divergence-free finite elements on tetrahedral grids for $k\ge 6$,
Math. Comp. 80 (2011), no. 274, 669–695.
Google Scholar

[50]

S. Zhang,
Quadratic divergence-free finite elements on Powell–Sabin tetrahedral grids,
Calcolo 48 (2011), no. 3, 211–244.
Web of ScienceCrossrefGoogle Scholar

## Comments (0)