[1]

E. E. Adams and L. W. Gelhar,
Field study of dispersion in a heterogeneous aquifer: 2. Spatial movement analysis,
Water Resour. Res. 28 (1992), no. 2, 3293–3307.
CrossrefGoogle Scholar

[2]

A. Angulo, L. Pérez Pozo and F. Perazzo,
A posteriori error estimator and an adaptive technique in meshless finite points method,
Eng. Anal. Bound. Elem. 33 (2009), no. 11, 1322–1338.
CrossrefWeb of ScienceGoogle Scholar

[3]

T. M. Atanackovic, S. Pilipovic and D. Zorica,
Existence and calculation of the solution to the time distributed order diffusion equation,
Phys. Scr. 2009 (2009), Article ID 014012.
Web of ScienceGoogle Scholar

[4]

K. Atkinson and W. Han,
Theoretical Numerical Analysis: A Functional Analysis Framework, 3rd ed.,
Texts Appl. Math. 39,
Springer, Dordrecht, 2009.
Google Scholar

[5]

S. N. Atluri and T. Zhu,
A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics,
Comput. Mech. 22 (1998), no. 2, 117–127.
CrossrefGoogle Scholar

[6]

T. Belytschko, Y. Y. Lu and L. Gu,
Element-free Galerkin methods,
Internat. J. Numer. Methods Engrg. 37 (1994), no. 2, 229–256.
CrossrefGoogle Scholar

[7]

W. Bu, A. Xiao and W. Zeng,
Finite difference/finite element methods for distributed-order time fractional diffusion equations,
J. Sci. Comput. 72 (2017), no. 1, 422–441.
Web of ScienceCrossrefGoogle Scholar

[8]

M. Caputo,
Linear models of dissipation whose Q is almost frequency independent. II,
Geophys. J. Roy. Astronom. Soc. 13 (1967), no. 5, 529–539.
CrossrefGoogle Scholar

[9]

M. Caputo,
Elasticità e dissipazione,
Zanichelli, Bologna, 1969.
Google Scholar

[10]

M. Caputo,
Distributed order differential equations modelling dielectric induction and diffusion,
Fract. Calc. Appl. Anal. 4 (2001), no. 4, 421–442.
Google Scholar

[11]

A. V. Chechkin, R. Gorenflo and I. M. Sokolov,
Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations,
Phys. Rev. E. 66 (2002), no. 4, Article ID 046129.
Google Scholar

[12]

A. V. Chechkin, R. Gorenflo, I. M. Sokolov and V. Y. Gonchar,
Distributed order time fractional diffusion equation,
Fract. Calc. Appl. Anal. 6 (2003), no. 3, 259–279.
Google Scholar

[13]

R. Cheng and Y. Cheng,
Error estimates for the finite point method,
Appl. Numer. Math. 58 (2008), no. 6, 884–898.
CrossrefWeb of ScienceGoogle Scholar

[14]

K. Diethelm and N. J. Ford,
Numerical analysis for distributed-order differential equations,
J. Comput. Appl. Math. 225 (2009), no. 1, 96–104.
Web of ScienceCrossrefGoogle Scholar

[15]

N. J. Ford and M. L. Morgado,
Distributed order equations as boundary value problems,
Comput. Math. Appl. 64 (2012), no. 10, 2973–2981.
CrossrefWeb of ScienceGoogle Scholar

[16]

G.-H. Gao, H.-W. Sun and Z.-Z. Sun,
Some high-order difference schemes for the distributed-order differential equations,
J. Comput. Phys. 298 (2015), 337–359.
Web of ScienceCrossrefGoogle Scholar

[17]

G.-H. Gao and Z.-Z. Sun,
Two alternating direction implicit difference schemes for two-dimensional distributed-order fractional diffusion equations,
J. Sci. Comput. 66 (2016), no. 3, 1281–1312.
CrossrefWeb of ScienceGoogle Scholar

[18]

G.-H. Gao and Z.-Z. Sun,
Two unconditionally stable and convergent difference schemes with the extrapolation method for the one-dimensional distributed-order differential equations,
Numer. Methods Partial Differential Equations 32 (2016), no. 2, 591–615.
CrossrefWeb of ScienceGoogle Scholar

[19]

R. A. Gingold and J. J. Monaghan,
Smoothed particle hydrodynamics: Theory and application to non-spherical stars,
Mon. Not. R. Astron. Soc. 181 (1977), no. 3, 375–389.
CrossrefGoogle Scholar

[20]

A. Hanyga,
Anomalous diffusion without scale invariance,
J. Phys. A 40 (2007), no. 21, 5551–5563.
CrossrefGoogle Scholar

[21]

Z. Jiao, Y. Chen and I. Podlubny,
Distributed-Order Dynamic Systems,
Springer Briefs Electr. Comput. Eng.,
Springer, London, 2012.
Google Scholar

[22]

B. Jin, R. Lazarov, D. Sheen and Z. Zhou,
Error estimates for approximations of distributed order time fractional diffusion with nonsmooth data,
Fract. Calc. Appl. Anal. 19 (2016), no. 1, 69–93.
Web of ScienceGoogle Scholar

[23]

J. T. Katsikadelis,
Numerical solution of distributed order fractional differential equations,
J. Comput. Phys. 259 (2014), 11–22.
Web of ScienceCrossrefGoogle Scholar

[24]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo,
Theory and Applications of Fractional Differential Equations,
North-Holland Math. Stud. 204,
Elsevier Science, Amsterdam, 2006.
Google Scholar

[25]

A. N. Kochubei,
Distributed order calculus and equations of ultraslow diffusion,
J. Math. Anal. Appl. 340 (2008), no. 1, 252–281.
Web of ScienceCrossrefGoogle Scholar

[26]

S. Li and W. K. Liu,
Moving least-square reproducing kernel method. II. Fourier analysis,
Comput. Methods Appl. Mech. Engrg. 139 (1996), no. 1–4, 159–193.
CrossrefGoogle Scholar

[27]

G. R. Liu and Y. T. Gu,
A point interpolation method for two-dimensional solids,
Int. J. Numer. Methods Eng. 50 (2001), no. 4, 937–951.
CrossrefGoogle Scholar

[28]

W. K. Liu, Y. Chen, S. Jun, J. S. Chen, T. Belytschko, C. Pan, R. A. Uras and C. T. Chang,
Overview and applications of the reproducing kernel particle methods,
Arch. Comput. Methods Eng. 3 (1996), no. 1, 3–80.
CrossrefGoogle Scholar

[29]

W. K. Liu, S. Jun and Y. F. Zhang,
Reproducing kernel particle methods,
Internat. J. Numer. Methods Fluids 20 (1995), no. 8–9, 1081–1106.
CrossrefGoogle Scholar

[30]

W.-K. Liu, S. Li and T. Belytschko,
Moving least-square reproducing kernel methods. I. Methodology and convergence,
Comput. Methods Appl. Mech. Engrg. 143 (1997), no. 1–2, 113–154.
CrossrefGoogle Scholar

[31]

C. F. Lorenzo and T. T. Hartley,
Variable order and distributed order fractional operators,
Nonlinear Dynam. 29 (2002), no. 1–4, 57–98.
CrossrefGoogle Scholar

[32]

Y. Luchko,
Boundary value problems for the generalized time-fractional diffusion equation of distributed order,
Fract. Calc. Appl. Anal. 12 (2009), no. 4, 409–422.
Google Scholar

[33]

F. Mainardi, A. Mura, G. Pagnini and R. Gorenflo,
Time-fractional diffusion of distributed order,
J. Vib. Control 14 (2008), no. 9–10, 1267–1290.
CrossrefWeb of ScienceGoogle Scholar

[34]

F. Mainardi, G. Pagnini and R. Gorenflo,
Some aspects of fractional diffusion equations of single and distributed order,
Appl. Math. Comput. 187 (2007), no. 1, 295–305.
Web of ScienceGoogle Scholar

[35]

S. Mashayekhi and M. Razzaghi,
Numerical solution of distributed order fractional differential equations by hybrid functions,
J. Comput. Phys. 315 (2016), 169–181.
Web of ScienceCrossrefGoogle Scholar

[36]

M. M. Meerschaert, E. Nane and P. Vellaisamy,
Distributed-order fractional diffusions on bounded domains,
J. Math. Anal. Appl. 379 (2011), no. 1, 216–228.
Web of ScienceCrossrefGoogle Scholar

[37]

J. M. Melenk and I. Babuška,
The partition of unity finite element method: basic theory and applications,
Comput. Methods Appl. Mech. Engrg. 139 (1996), no. 1–4, 289–314.
CrossrefGoogle Scholar

[38]

B. Nayroles, G. Touzot and P. Villon,
Generalizing the finite element method: Diffuse approximation and diffuse elements,
Comput. Mech. 10 (1992), no. 5, 307–315.
CrossrefGoogle Scholar

[39]

R. Nigmatulin,
The realization of the generalized transfer equation in a medium with fractal geometry,
Phys. Stat. Sol. B. 133 (1986), no. 1, 425–430.
CrossrefGoogle Scholar

[40]

E. Oñate, S. Idelsohn, O. C. Zienkiewicz and R. L. Taylor,
A finite point method in computational mechanics. Applications to convective transport and fluid flow,
Internat. J. Numer. Methods Engrg. 39 (1996), no. 22, 3839–3866.
CrossrefGoogle Scholar

[41]

E. Oñate, S. Idelsohn, O. C. Zienkiewicz, R. L. Taylor and C. Sacco,
A stabilized finite point method for analysis of fluid mechanics problems,
Comput. Methods Appl. Mech. Engrg. 139 (1996), no. 1–4, 315–346.
CrossrefGoogle Scholar

[42]

I. Podlubny, T. Skovranek, B. M. Vinagre Jara, I. Petras, V. Verbitsky and Y. Chen,
Matrix approach to discrete fractional calculus III: Non-equidistant grids, variable step length and distributed orders,
Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 371 (2013), no. 1990, Article iD 20120153.
Google Scholar

[43]

A. Quarteroni and A. Valli,
Numerical Approximation of Partial Differential Equations,
Springer Ser. Comput. Math. 23,
Springer, Berlin, 1994.
Google Scholar

[44]

Z.-Z. Sun and X. Wu,
A fully discrete difference scheme for a diffusion-wave system,
Appl. Numer. Math. 56 (2006), no. 2, 193–209.
CrossrefGoogle Scholar

[45]

S. Umarov and R. Gorenflo,
Cauchy and nonlocal multi-point problems for distributed order pseudo-differential equations. I,
Z. Anal. Anwend. 24 (2005), no. 3, 449–466.
Google Scholar

[46]

X. X. Zhang and L. Mouchao,
Persistence of anomalous dispersion in uniform porous media demonstrated by pore-scale simulations,
Water. Resour. Res. 43 (2007), no. 7, 407–437.
Web of ScienceGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.