Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Computational Methods in Applied Mathematics

Editor-in-Chief: Carstensen, Carsten

Managing Editor: Matus, Piotr

4 Issues per year


IMPACT FACTOR 2017: 0.658

CiteScore 2017: 1.05

SCImago Journal Rank (SJR) 2017: 1.291
Source Normalized Impact per Paper (SNIP) 2017: 0.893

Mathematical Citation Quotient (MCQ) 2016: 0.75

Online
ISSN
1609-9389
See all formats and pricing
More options …
Ahead of print

Issues

Equilibrated Stress Tensor Reconstruction and A Posteriori Error Estimation for Nonlinear Elasticity

Michele Botti
  • Corresponding author
  • University of Montpellier, Institut Montpéllierain Alexander Grothendieck, 34095 Montpellier, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rita Riedlbeck
Published Online: 2018-06-20 | DOI: https://doi.org/10.1515/cmam-2018-0012

Abstract

We consider hyperelastic problems and their numerical solution using a conforming finite element discretization and iterative linearization algorithms. For these problems, we present equilibrated, weakly symmetric, H(div)-conforming stress tensor reconstructions, obtained from local problems on patches around vertices using the Arnold–Falk–Winther finite element spaces. We distinguish two stress reconstructions: one for the discrete stress and one representing the linearization error. The reconstructions are independent of the mechanical behavior law. Based on these stress tensor reconstructions, we derive an a posteriori error estimate distinguishing the discretization, linearization, and quadrature error estimates, and propose an adaptive algorithm balancing these different error sources. We prove the efficiency of the estimate, and confirm it on a numerical test with an analytical solution. We then apply the adaptive algorithm to a more application-oriented test, considering the Hencky–Mises and an isotropic damage model.

Keywords: A Posteriori Error Estimate; Equilibrated Stress Reconstruction; Arnold–Falk–Winther Finite Element; Nonlinear Elasticity; Hyperelasticity

MSC 2010: 65N15; 65N30; 74B20; 74S05

References

  • [1]

    M. Ainsworth and J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis, Pure Appl. Math. (New York), Wiley-Interscience, New York, (2000). Google Scholar

  • [2]

    M. Ainsworth and R. Rankin, Guaranteed computable error bounds for conforming and nonconforming finite element analysis in planar elasticity, Internat. J. Numer. Methods Engrg. 82 (2010), 1114–1157. CrossrefGoogle Scholar

  • [3]

    T. Arbogast and Z. Chen, On the implementation of mixed methods as nonconforming methods for second-order elliptic problems, Math. Comp. 64 (1995), no. 211, 943–972. Google Scholar

  • [4]

    D. N. Arnold, R. S. Falk and R. Winther, Mixed finite element methods for linear elasticity with weakly imposed symmetry, Math. Comp. 76 (2007), 1699–1723. CrossrefGoogle Scholar

  • [5]

    D. N. Arnold and R. Winther, Mixed finite elements for elasticity, Numer. Math. 92 (2002), 401–419. CrossrefGoogle Scholar

  • [6]

    A. M. Barrientos, N. G. Gatica and P. E. Stephan, A mixed finite element method for nonlinear elasticity: Two-fold saddle point approach and a-posteriori error estimate, Numer. Math. 91 (2002), no. 2, 197–222. CrossrefGoogle Scholar

  • [7]

    M. Botti, D. A. Di Pietro and P. Sochala, A hybrid high-order method for nonlinear elasticity, SIAM J. Numer. Anal. 55 (2017), no. 6, 2687–2717. CrossrefWeb of ScienceGoogle Scholar

  • [8]

    D. Braess, V. Pillwein and J. Schöberl, Equilibrated residual error estimates are p-robust, Comput. Methods Appl. Mech. Engrg. 198 (2009), 1189–1197. CrossrefGoogle Scholar

  • [9]

    D. Braess and J. Schöberl, Equilibrated residual error estimator for edge elements, Math. Comp. 77 (2008), no. 262, 651–672. Google Scholar

  • [10]

    F. Brezzi, J. Douglas and L. D. Marini, Recent results on mixed finite element methods for second order elliptic problems, Vistas in Applied Mathematics. Numerical Analysis, Atmospheric Sciences, Immunology, Optimization Software Inc., New York (1986), 25–43. Google Scholar

  • [11]

    M. Čermák, F. Hecht, Z. Tang and M. Vohralík, Adaptive inexact iterative algorithms based on polynomial-degree-robust a posteriori estimates for the stokes problem, Numer. Math. 138 (2017), no. 4, 1027–1065. Web of ScienceGoogle Scholar

  • [12]

    M. Cervera, M. Chiumenti and R. Codina, Mixed stabilized finite element methods in nonlinear solid mechanics: Part II: Strain localization, Comput. Methods Appl. Mech. Engrg. 199 (2010), no. 37–40, 2571–2589. CrossrefGoogle Scholar

  • [13]

    L. Chamoin, P. Ladevèze and F. Pled, On the techniques for constructing admissible stress fields in model verification: Performances on engineering examples, Internat. J. Numer. Methods Engrg. 88 (2011), no. 5, 409–441. CrossrefGoogle Scholar

  • [14]

    L. Chamoin, P. Ladevèze and F. Pled, An enhanced method with local energy minimization for the robust a posteriori construction of equilibrated stress field in finite element analysis, Comput. Mech. 49 (2012), 357–378. CrossrefGoogle Scholar

  • [15]

    M. Destrade and R. W. Ogden, On the third- and fourth-order constants of incompressible isotropic elasticity, J. Acoust. Soc. Amer. 128 (2010), no. 6, 3334–3343. CrossrefGoogle Scholar

  • [16]

    P. Destuynder and B. Métivet, Explicit error bounds in a conforming finite element method, Math. Comp. 68 (1999), no. 228, 1379–1396. CrossrefGoogle Scholar

  • [17]

    P. Dörsek and J. Melenk, Symmetry-free, p-robust equilibrated error indication for the hp-version of the FEM in nearly incompressible linear elasticity, Comput. Methods Appl. Math. 13 (2013), 291–304. Web of ScienceGoogle Scholar

  • [18]

    L. El Alaoui, A. Ern and M. Vohralík, Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems, Comput. Methods Appl. Mech. Engrg. 200 (2011), 2782–2795. CrossrefGoogle Scholar

  • [19]

    A. Ern and M. Vohralík, A posteriori error estimation based on potential and flux reconstruction for the heat equation, SIAM J. Numer. Anal. 48 (2010), no. 1, 198–223. Web of ScienceCrossrefGoogle Scholar

  • [20]

    A. Ern and M. Vohralík, Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs, SIAM J. Sci. Comput. 35 (2013), no. 4, A1761–A1791. Web of ScienceGoogle Scholar

  • [21]

    A. Ern and M. Vohralík, Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations, SIAM J. Numer. Anal. 53 (2015), no. 2, 1058–1081. Web of ScienceCrossrefGoogle Scholar

  • [22]

    A. Ern and M. Vohralík, Broken stable H1 and H(div) polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions, preprint (2017), https://arxiv.org/abs/1701.02161.

  • [23]

    G. N. Gatica, A. Marquez and W. Rudolph, A priori and a posteriori error analyses of augmented twofold saddle point formulations for nonlinear elasticity problems, Comput. Methods Appl. Mech. Engrg. 264 (2013), no. 1, 23–48. CrossrefGoogle Scholar

  • [24]

    G. N. Gatica and E. P. Stephan, A mixed-FEM formulation for nonlinear incompressible elasticity in the plane, Numer. Methods Partial Differential Equations 18 (2002), no. 1, 105–128. CrossrefGoogle Scholar

  • [25]

    A. Hannukainen, R. Stenberg and M. Vohralík, A unified framework for a posteriori error estimation for the Stokes problem, Numer. Math. 122 (2012), 725–769. Web of ScienceCrossrefGoogle Scholar

  • [26]

    D. S. Hughes and J. L. Kelly, Second-order elastic deformation of solids, Phys. Rev. 92 (1953), 1145–1149. CrossrefGoogle Scholar

  • [27]

    K.-Y. Kim, Guaranteed a posteriori error estimator for mixed finite element methods of linear elasticity with weak stress symmetry, SIAM J. Numer. Anal. 48 (2011), 2364–2385. Web of ScienceGoogle Scholar

  • [28]

    P. Ladevèze, Comparaison de modèles de milieux continus, Ph.D. thesis, Université Pierre et Marie Curie (Paris 6), 1975. Google Scholar

  • [29]

    P. Ladevèze and D. Leguillon, Error estimate procedure in the finite element method and applications, SIAM J. Numer. Anal. 20 (1983), 485–509. CrossrefGoogle Scholar

  • [30]

    P. Ladevèze, J. P. Pelle and P. Rougeot, Error estimation and mesh optimization for classical finite elements, Engrg. Comp. 8 (1991), no. 1, 69–80. CrossrefGoogle Scholar

  • [31]

    A. F. D. Loula and J. N. C. Guerreiro, Finite element analysis of nonlinear creeping flows, Comput. Methods Appl. Mech. Engrg. 79 (1990), no. 1, 87–109. CrossrefGoogle Scholar

  • [32]

    R. Luce and B. I. Wohlmuth, A local a posteriori error estimator based on equilibrated fluxes, SIAM J. Numer. Anal. 42 (2004), 1394–1414. CrossrefGoogle Scholar

  • [33]

    J. Nec̆as, Introduction to the Theory of Nonlinear Elliptic Equations, John Wiley & Sons, Chichester, 1986. Google Scholar

  • [34]

    S. Nicaise, K. Witowski and B. Wohlmuth, An a posteriori error estimator for the Lamé equation based on H(div)-conforming stress approximations, IMA J. Numer. Anal. 28 (2008), 331–353. Google Scholar

  • [35]

    S. Ohnimus, E. Stein and E. Walhorn, Local error estimates of FEM for displacements and stresses in linear elasticity by solving local Neumann problems, Internat. J. Numer. Methods Engrg. 52 (2001), 727–746. CrossrefGoogle Scholar

  • [36]

    D. A. D. Pietro and J. Droniou, A hybrid high-order method for Leray–Lions elliptic equations on general meshes, Math. Comp. 86 (2017), no. 307, 2159–2191. Google Scholar

  • [37]

    D. A. D. Pietro and J. Droniou, Ws,p-approximation properties of elliptic projectors on polynomial spaces, with application to the error analysis of a hybrid high-order discretisation of Leray–Lions problems, Math. Models Methods Appl. Sci. 27 (2017), no. 5, 879–908. Web of ScienceGoogle Scholar

  • [38]

    M. Pitteri and G. Zanotto, Continuum Models for Phase Transitions and Twinning in Crystals, Chapman & Hall/CRC, Boca Raton, 2002. Google Scholar

  • [39]

    W. Prager and J. L. Synge, Approximations in elasticity based on the concept of function space, Quart. Appl. Math. 5 (1947), 241–269. CrossrefGoogle Scholar

  • [40]

    S. I. Repin, A Posteriori Estimates for Partial Differential Equations, Radon Ser. Comput. Appl. Math. 4, Walter de Gruyter, Berlin, 2008. Google Scholar

  • [41]

    R. Riedlbeck, D. A. Di Pietro and A. Ern, Equilibrated stress reconstructions for linear elasticity problems with application to a posteriori error analysis, Finite Volumes for Complex Applications VIII – Methods and Theoretical Aspects, Springer Proc. Math. Stat. 199, Springer, Cham (2017), 293–301. Google Scholar

  • [42]

    R. Riedlbeck, D. A. Di Pietro, A. Ern, S. Granet and K. Kazymyrenko, Stress and flux reconstruction in Biot’s poro-elasticity problem with application to a posteriori analysis, Comput. Math. Appl. 73 (2017), no. 7, 1593–1610. CrossrefWeb of ScienceGoogle Scholar

  • [43]

    D. Sandri, Sur l’approximation numérique des écoulements quasi-Newtoniens dont la viscosité suit la loi puissance ou la loi de Carreau, RAIRO Model. Math. Anal. Numer. 27 (1993), no. 2, 131–155. CrossrefGoogle Scholar

  • [44]

    L. R. G. Treloar, The Physics of Rubber Elasticity, Oxford University Press, USA, 1975. Google Scholar

  • [45]

    R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner, Chichester, 1996. Google Scholar

  • [46]

    R. Verfürth, A review of a posteriori error estimation techniques for elasticity problems, Comput. Methods Appl. Mech. Engrg. 176 (1999), 419–440. CrossrefGoogle Scholar

  • [47]

    M. Vogelius, An analysis of the p-version of the finite element method for nearly incompressible materials. Uniformly valid, optimal error estimates, Numer. Math. 41 (1983), 39–53. CrossrefGoogle Scholar

  • [48]

    M. Vohralík, On the discrete Poincaré–Friedrichs inequalities for nonconforming approximations of the Sobolev space H1, Numer. Funct. Anal. Optim. 26 (2005), no. 7–8, 925–952. Google Scholar

  • [49]

    M. Vohralík, Unified primal formulation-based a priori and a posteriori error analysis of mixed finite element methods, Math. Comp. 79 (2010), 2001–2032. CrossrefGoogle Scholar

About the article

Received: 2018-02-12

Revised: 2018-05-31

Accepted: 2018-06-03

Published Online: 2018-06-20


Funding Source: Agence Nationale de la Recherche

Award identifier / Grant number: 2014-2-006

Funding Source: Bureau de Recherches Géologiques et Minières

Award identifier / Grant number: RP18DRP019

The work of Michele Botti was partially supported by Labex NUMEV (ANR-10-LABX-20) ref. 2014-2-006 and by the Bureau de Recherches Géologiques et Minières (Project RP18DRP019).


Citation Information: Computational Methods in Applied Mathematics, ISSN (Online) 1609-9389, ISSN (Print) 1609-4840, DOI: https://doi.org/10.1515/cmam-2018-0012.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in