[1]

A. Abdulle, W. E, B. Engquist and E. Vanden-Eijnden,
The heterogeneous multiscale method,
Acta Numer. 21 (2012), 1–87.
CrossrefWeb of ScienceGoogle Scholar

[2]

G. Allaire,
Shape Optimization by the Homogenization Method,
Appl. Math. Sci. 146,
Springer, New York, 2002.
Google Scholar

[3]

G. Allaire and R. Brizzi,
A multiscale finite element method for numerical homogenization,
SIAM Multiscale Model. Simul. 4 (2005), no. 3, 790–812.
CrossrefGoogle Scholar

[4]

R. Araya, C. Harder, D. Paredes and F. Valentin,
Multiscale hybrid-mixed method,
SIAM J. Numer. Anal. 51 (2013), no. 6, 3505–3531.
Web of ScienceCrossrefGoogle Scholar

[5]

D. N. Arnold, F. Brezzi, B. Cockburn and L. D. Marini,
Unified analysis of discontinuous Galerkin methods for elliptic problems,
SIAM J. Numer. Anal. 39 (2002), no. 5, 1749–1779.
CrossrefGoogle Scholar

[6]

B. Ayuso de Dios, K. Lipnikov and G. Manzini,
The nonconforming virtual element method,
ESAIM Math. Model. Numer. Anal. (M2AN) 50 (2016), no. 3, 879–904.
CrossrefGoogle Scholar

[7]

F. Bassi, L. Botti, A. Colombo, D. A. Di Pietro and P. Tesini,
On the flexibility of agglomeration-based physical space discontinuous Galerkin discretizations,
J. Comput. Phys. 231 (2012), no. 1, 45–65.
CrossrefWeb of ScienceGoogle Scholar

[8]

M. Bebendorf,
A note on the Poincaré inequality for convex domains,
Z. Anal. Anwend. 22 (2003), no. 4, 751–756.
Google Scholar

[9]

L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo,
Basic principles of virtual element methods,
Math. Models Meth. Appl. Sci. (M3AS) 23 (2013), 199–214.
CrossrefGoogle Scholar

[10]

A. Cangiani, E. H. Georgoulis and P. Houston,
*hp*-version discontinuous Galerkin methods on polygonal and polyhedral meshes,
Math. Models Meth. Appl. Sci. (M3AS) 24 (2014), no. 10, 2009–2041.
Web of ScienceCrossrefGoogle Scholar

[11]

E. T. Chung, S. Fu and Y. Yang,
An enriched multiscale mortar space for high contrast flow problems,
Commun. Comput. Phys. 23 (2018), no. 2, 476–499.
Web of ScienceGoogle Scholar

[12]

M. Cicuttin, D. A. Di Pietro and A. Ern,
Implementation of discontinuous skeletal methods on arbitrary-dimensional, polytopal meshes using generic programming,
J. Comput. Appl. Math. (2017), 10.1016/j.cam.2017.09.017.
Google Scholar

[13]

B. Cockburn,
Static condensation, hybridization, and the devising of the HDG methods,
Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations,
Lect. Notes Comput. Sci. Eng. 114,
Springer, Cham (2016), 129–177.
Google Scholar

[14]

B. Cockburn, D. A. Di Pietro and A. Ern,
Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods,
ESAIM Math. Model. Numer. Anal. (M2AN) 50 (2016), no. 3, 635–650.
CrossrefGoogle Scholar

[15]

B. Cockburn, J. Gopalakrishnan and R. Lazarov,
Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second-order elliptic problems,
SIAM J. Numer. Anal. 47 (2009), no. 2, 1319–1365.
CrossrefWeb of ScienceGoogle Scholar

[16]

D. A. Di Pietro and A. Ern,
Mathematical Aspects of Discontinuous Galerkin Methods,
Math. Appl. 69,
Springer, Berlin, 2012.
Google Scholar

[17]

D. A. Di Pietro and A. Ern,
A hybrid high-order locking-free method for linear elasticity on general meshes,
Comput. Methods Appl. Mech. Engrg. 283 (2015), 1–21.
CrossrefGoogle Scholar

[18]

D. A. Di Pietro and A. Ern,
Hybrid high-order methods for variable-diffusion problems on general meshes,
C. R. Acad. Sci. Paris Ser. I 353 (2015), 31–34.
CrossrefGoogle Scholar

[19]

D. A. Di Pietro, A. Ern and S. Lemaire,
An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators,
Comput. Methods Appl. Math. 14 (2014), no. 4, 461–472.
Web of ScienceGoogle Scholar

[20]

D. A. Di Pietro, A. Ern and S. Lemaire,
A review of hybrid high-order methods: Formulations, computational aspects, comparison with other methods,
Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations
Lect. Notes Comput. Sci. Eng. 114,
Springer, Cham (2016), 205–236.
Google Scholar

[21]

W. E and B. Engquist,
The heterogeneous multiscale methods,
Commun. Math. Sci. 1 (2003), 87–132.
CrossrefGoogle Scholar

[22]

Y. Efendiev, J. Galvis and T. Y. Hou,
Generalized multiscale finite element methods (GMsFEM),
J. Comput. Phys. 251 (2013), 116–135.
Web of ScienceCrossrefGoogle Scholar

[23]

Y. Efendiev and T. Y. Hou,
Multiscale Finite Element Methods – Theory and Applications,
Surv. Tutor. Appl. Math. Sci. 4,
Springer, New York, 2009.
Google Scholar

[24]

Y. Efendiev, T. Y. Hou and X.-H. Wu,
Convergence of a nonconforming multiscale finite element method,
SIAM J. Numer. Anal. 37 (2000), no. 3, 888–910.
CrossrefGoogle Scholar

[25]

Y. Efendiev, R. Lazarov, M. Moon and K. Shi,
A spectral multiscale hybridizable discontinuous Galerkin method for second order elliptic problems,
Comput. Methods Appl. Mech. Engrg. 292 (2015), 243–256.
CrossrefGoogle Scholar

[26]

Y. Efendiev, R. Lazarov and K. Shi,
A multiscale HDG method for second order elliptic equations. Part I. Polynomial and homogenization-based multiscale spaces,
SIAM J. Numer. Anal. 53 (2015), no. 1, 342–369.
Web of ScienceCrossrefGoogle Scholar

[27]

A. Ern and J.-L. Guermond,
Finite element quasi-interpolation and best approximation,
ESAIM Math. Model. Numer. Anal. (M2AN) 51 (2017), no. 4, 1367–1385.
Google Scholar

[28]

A. Ern and M. Vohralík,
Stable broken ${H}^{1}$ and $H(\mathrm{div})$ polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions,
preprint (2016), https://hal.inria.fr/hal-01422204.

[29]

D. Gilbarg and N. S. Trudinger,
Elliptic Partial Differential Equations of Second Order,
Classics Math.,
Springer, Berlin, 2001.
Google Scholar

[30]

V. Girault and P.-A. Raviart,
Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms,
Springer Ser. Comput. Math. 5,
Springer, Berlin, 1986.
Google Scholar

[31]

A. Gloria,
Numerical homogenization: Survey, new results, and perspectives,
ESAIM Proc. 37 (2012), 50–116.
CrossrefGoogle Scholar

[32]

P. Henning and D. Peterseim,
Oversampling for the multiscale finite element method,
SIAM Multiscale Model. Simul. 11 (2013), no. 4, 1149–1175.
CrossrefGoogle Scholar

[33]

J. S. Hesthaven, S. Zhang and X. Zhu,
High-order multiscale finite element method for elliptic problems,
SIAM Multiscale Model. Simul. 12 (2014), no. 2, 650–666.
CrossrefGoogle Scholar

[34]

T. Y. Hou and X.-H. Wu,
A multiscale finite element method for elliptic problems in composite materials and porous media,
J. Comput. Phys. 134 (1997), 169–189.CrossrefGoogle Scholar

[35]

T. Y. Hou, X.-H. Wu and Z. Cai,
Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients,
Math. Comp. 68 (1999), no. 227, 913–943.
CrossrefGoogle Scholar

[36]

T. Y. Hou, X.-H. Wu and Y. Zhang,
Removing the cell resonance error in the multiscale finite element method via a Petrov–Galerkin formulation,
Commun. Math. Sci. 2 (2004), no. 2, 185–205.
CrossrefGoogle Scholar

[37]

V. V. Jikov, S. M. Kozlov and O. A. Oleinik,
Homogenization of Differential Operators and Integral Functionals,
Springer, Berlin, 1994.
Google Scholar

[38]

A. Konaté,
Méthode multi-échelle pour la simulation d’écoulements miscibles en milieux poreux,
Ph.D. thesis, Université Pierre et Marie Curie, 2017, https://tel.archives-ouvertes.fr/tel-01558994.

[39]

C. Le Bris, F. Legoll and A. Lozinski,
MsFEM à la Crouzeix–Raviart for highly oscillatory elliptic problems,
Chin. Ann. Math. Ser. B 34 (2013), no. 1, 113–138.
Web of ScienceCrossrefGoogle Scholar

[40]

C. Le Bris, F. Legoll and A. Lozinski,
An MsFEM-type approach for perforated domains,
SIAM Multiscale Model. Simul. 12 (2014), no. 3, 1046–1077.
CrossrefGoogle Scholar

[41]

A. Målqvist and D. Peterseim,
Localization of elliptic multiscale problems,
Math. Comp. 83 (2014), 2583–2603.
CrossrefGoogle Scholar

[42]

L. Mu, J. Wang and X. Ye,
A weak Galerkin generalized multiscale finite element method,
J. Comput. Appl. Math. 305 (2016), 68–81.
Web of ScienceCrossrefGoogle Scholar

[43]

D. Paredes, F. Valentin and H. M. Versieux,
On the robustness of multiscale hybrid-mixed methods,
Math. Comp. 86 (2017), 525–548.
Google Scholar

[44]

N. Sukumar and A. Tabarraei,
Conforming polygonal finite elements,
Internat. J. Numer. Methods Engrg. 61 (2004), no. 12, 2045–2066.
CrossrefGoogle Scholar

[45]

A. Veeser and R. Verfürth,
Poincaré constants for finite element stars,
IMA J. Numer. Anal. 32 (2012), no. 1, 30–47.
CrossrefGoogle Scholar

[46]

E. L. Wachspress,
A Rational Finite Element Basis,
Math. Sci. Eng. 114,
Academic Press, New York, 1975.
Google Scholar

[47]

J. Wang and X. Ye,
A weak Galerkin finite element method for second-order elliptic problems,
J. Comput. Appl. Math. 241 (2013), 103–115.
CrossrefWeb of ScienceGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.