Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Computational Methods in Applied Mathematics

Editor-in-Chief: Carstensen, Carsten

Managing Editor: Matus, Piotr

4 Issues per year


IMPACT FACTOR 2017: 0.658

CiteScore 2017: 1.05

SCImago Journal Rank (SJR) 2017: 1.291
Source Normalized Impact per Paper (SNIP) 2017: 0.893

Mathematical Citation Quotient (MCQ) 2017: 0.76

Online
ISSN
1609-9389
See all formats and pricing
More options …
Ahead of print

Issues

Edge Patch-Wise Local Projection Stabilized Nonconforming FEM for the Oseen Problem

Rahul Biswas / Asha K. Dond / Thirupathi Gudi
Published Online: 2018-06-21 | DOI: https://doi.org/10.1515/cmam-2018-0020

Abstract

In finite element approximation of the Oseen problem, one needs to handle two major difficulties, namely, the lack of stability due to convection dominance and the incompatibility between the approximating finite element spaces for the velocity and the pressure. These difficulties are addressed in this article by using an edge patch-wise local projection (EPLP) stabilization technique. The article analyses the EPLP stabilized nonconforming finite element methods for the Oseen problem. For approximating the velocity, the lowest-order Crouzeix–Raviart (CR) nonconforming finite element space is considered; whereas for approximating the pressure, two discrete spaces are considered, namely, the piecewise constant polynomial space and the lowest-order CR finite element space. The proposed discrete weak formulation is a combination of the standard Galerkin method, EPLP stabilization and weakly imposed boundary condition by using Nitsche’s technique. The resulting bilinear form satisfies an inf-sup condition with respect to EPLP norm, which leads to the well-posedness of the discrete problem. A priori error analysis assures the optimal order of convergence in both the cases, that is, order one in the case of piecewise constant approximation and 32 in the case of CR-finite element approximation for pressure. The numerical experiments illustrate the theoretical findings.

Keywords: Oseen Problem; Patch-Wise Local Projection; Nonconforming FEM

MSC 2010: 65N30; 65N15; 65N12; 65K10

References

  • [1]

    D. N. Arnold, F. Brezzi, B. Cockburn and L. D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001/02), no. 5, 1749–1779. Google Scholar

  • [2]

    R. E. Bank and H. Yserentant, On the H1-stability of the L2-projection onto finite element spaces, Numer. Math. 126 (2014), no. 2, 361–381. Web of ScienceGoogle Scholar

  • [3]

    R. Becker and M. Braack, A finite element pressure gradient stabilization for the Stokes equations based on local projections, Calcolo 38 (2001), no. 4, 173–199. CrossrefGoogle Scholar

  • [4]

    M. Braack and E. Burman, Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method, SIAM J. Numer. Anal. 43 (2006), no. 6, 2544–2566. CrossrefGoogle Scholar

  • [5]

    M. Braack, E. Burman, V. John and G. Lube, Stabilized finite element methods for the generalized Oseen problem, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 4–6, 853–866. CrossrefGoogle Scholar

  • [6]

    J. H. Bramble, J. E. Pasciak and O. Steinbach, On the stability of the L2 projection in H1(Ω), Math. Comp. 71 (2002), no. 237, 147–156. Google Scholar

  • [7]

    S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Texts Appl. Math. 15, Springer, New York, 2008. Google Scholar

  • [8]

    E. Burman, A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty, SIAM J. Numer. Anal. 43 (2005), no. 5, 2012–2033. CrossrefGoogle Scholar

  • [9]

    E. Burman, M. A. Fernández and P. Hansbo, Continuous interior penalty finite element method for Oseen’s equations, SIAM J. Numer. Anal. 44 (2006), no. 3, 1248–1274. CrossrefGoogle Scholar

  • [10]

    E. Burman and P. Hansbo, Stabilized Crouzeix-Raviart element for the Darcy–Stokes problem, Numer. Methods Partial Differential Equations 21 (2005), no. 5, 986–997. CrossrefGoogle Scholar

  • [11]

    E. Burman and P. Hansbo, A stabilized non-conforming finite element method for incompressible flow, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 23–24, 2881–2899. CrossrefGoogle Scholar

  • [12]

    C. Carstensen, Merging the Bramble–Pasciak–Steinbach and the Crouzeix–Thomée criterion for H1-stability of the L2-projection onto finite element spaces, Math. Comp. 71 (2002), no. 237, 157–163. Google Scholar

  • [13]

    B. Cockburn, G. Kanschat and D. Schötzau, The local discontinuous Galerkin method for the Oseen equations, Math. Comp. 73 (2004), no. 246, 569–593. Google Scholar

  • [14]

    B. Cockburn, G. Kanschat and D. Schötzau, A note on discontinuous Galerkin divergence-free solutions of the Navier–Stokes equations, J. Sci. Comput. 31 (2007), no. 1–2, 61–73. Web of ScienceCrossrefGoogle Scholar

  • [15]

    B. Cockburn, G. Kanschat and D. Schötzau, An equal-order DG method for the incompressible Navier–Stokes equations, J. Sci. Comput. 40 (2009), no. 1–3, 188–210. CrossrefWeb of ScienceGoogle Scholar

  • [16]

    M. Crouzeix and V. Thomée, The stability in Lp and Wp1 of the L2-projection onto finite element function spaces, Math. Comp. 48 (1987), no. 178, 521–532. Google Scholar

  • [17]

    H. Dallmann, D. Arndt and G. Lube, Local projection stabilization for the Oseen problem, IMA J. Numer. Anal. 36 (2016), no. 2, 796–823. CrossrefWeb of ScienceGoogle Scholar

  • [18]

    D. A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Math. Appl. (Berlin) 69, Springer, Heidelberg, 2012. Google Scholar

  • [19]

    A. K. Dond and T. Gudi, Patch-wise local projection stabilized finite element methods for convection-diffusion-reaction problem, preprint.

  • [20]

    A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Appl. Math. Sci. 159, Springer, New York, 2004. Google Scholar

  • [21]

    L. P. Franca, V. John, G. Matthies and L. Tobiska, An inf-sup stable and residual-free bubble element for the Oseen equations, SIAM J. Numer. Anal. 45 (2007), no. 6, 2392–2407. Web of ScienceCrossrefGoogle Scholar

  • [22]

    S. Ganesan, G. Matthies and L. Tobiska, Local projection stabilization of equal order interpolation applied to the Stokes problem, Math. Comp. 77 (2008), no. 264, 2039–2060. CrossrefGoogle Scholar

  • [23]

    V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms, Springer Ser. Comput. Math. 5, Springer, Berlin, 1986. Google Scholar

  • [24]

    V. John, Finite Element Methods for Incompressible Flow Problems, Springer Ser. Comput. Math. 51, Springer, Cham, 2016. Google Scholar

  • [25]

    C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method, Cambridge University Press, Cambridge, 1987. Google Scholar

  • [26]

    P. Knobloch, A generalization of the local projection stabilization for convection-diffusion-reaction equations, SIAM J. Numer. Anal. 48 (2010), no. 2, 659–680. Web of ScienceCrossrefGoogle Scholar

  • [27]

    P. Knobloch and L. Tobiska, Improved stability and error analysis for a class of local projection stabilizations applied to the Oseen problem, Numer. Methods Partial Differential Equations 29 (2013), no. 1, 206–225. Web of ScienceCrossrefGoogle Scholar

  • [28]

    G. Matthies, P. Skrzypacz and L. Tobiska, A unified convergence analysis for local projection stabilisations applied to the Oseen problem, M2AN Math. Model. Numer. Anal. 41 (2007), no. 4, 713–742. CrossrefGoogle Scholar

  • [29]

    G. Matthies and L. Tobiska, Local projection type stabilization applied to inf-sup stable discretizations of the Oseen problem, IMA J. Numer. Anal. 35 (2015), no. 1, 239–269. Web of ScienceCrossrefGoogle Scholar

  • [30]

    J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Semin. Univ. Hambg. 36 (1971), 9–15. CrossrefGoogle Scholar

  • [31]

    H.-G. Roos, Robust numerical methods for singularly perturbed differential equations: A survey covering 2008–2012, ISRN Appl. Math. 2012 (2012), Article ID 379547. Google Scholar

  • [32]

    H.-G. Roos, M. Stynes and L. Tobiska, Robust Numerical Methods for Singularly Perturbed Differential Equations, Springer, Berlin, 2008. Google Scholar

  • [33]

    L. Tobiska, Finite element methods of streamline diffusion type for the Navier–Stokes equations, Numerical Methods (Miskolc 1990), Colloq. Math. Soc. János Bolyai 59, North-Holland, Amsterdam (1991), 259–266. Google Scholar

  • [34]

    L. Tobiska and R. Verfürth, Analysis of a streamline diffusion finite element method for the Stokes and Navier–Stokes equations, SIAM J. Numer. Anal. 33 (1996), no. 1, 107–127. CrossrefGoogle Scholar

  • [35]

    S. Turek and A. Ouazzi, Unified edge-oriented stabilization of nonconforming FEM for incompressible flow problems: Numerical investigations, J. Numer. Math. 15 (2007), no. 4, 299–322. Web of ScienceGoogle Scholar

  • [36]

    J. Volker, Finite Element Methods for Incompressible Flow Problems, Springer Ser. Comput. Math. 51, Springer, Cham, 2016. Google Scholar

About the article

Received: 2017-10-13

Revised: 2018-04-24

Accepted: 2018-06-08

Published Online: 2018-06-21


The second author gratefully acknowledges financial support from the National Board for Higher Mathematics (NBHM), Government of India.


Citation Information: Computational Methods in Applied Mathematics, ISSN (Online) 1609-9389, ISSN (Print) 1609-4840, DOI: https://doi.org/10.1515/cmam-2018-0020.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in