[1]

D. N. Arnold, F. Brezzi, B. Cockburn and L. D. Marini,
Unified analysis of discontinuous Galerkin methods for elliptic problems,
SIAM J. Numer. Anal. 39 (2001/02), no. 5, 1749–1779.
Google Scholar

[2]

R. E. Bank and H. Yserentant,
On the ${H}^{1}$-stability of the ${L}_{2}$-projection onto finite element spaces,
Numer. Math. 126 (2014), no. 2, 361–381.
Web of ScienceGoogle Scholar

[3]

R. Becker and M. Braack,
A finite element pressure gradient stabilization for the Stokes equations based on local projections,
Calcolo 38 (2001), no. 4, 173–199.
CrossrefGoogle Scholar

[4]

M. Braack and E. Burman,
Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method,
SIAM J. Numer. Anal. 43 (2006), no. 6, 2544–2566.
CrossrefGoogle Scholar

[5]

M. Braack, E. Burman, V. John and G. Lube,
Stabilized finite element methods for the generalized Oseen problem,
Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 4–6, 853–866.
CrossrefGoogle Scholar

[6]

J. H. Bramble, J. E. Pasciak and O. Steinbach,
On the stability of the ${L}^{2}$ projection in ${H}^{1}(\mathrm{\Omega})$,
Math. Comp. 71 (2002), no. 237, 147–156.
Google Scholar

[7]

S. C. Brenner and L. R. Scott,
The Mathematical Theory of Finite Element Methods, 3rd ed.,
Texts Appl. Math. 15,
Springer, New York, 2008.
Google Scholar

[8]

E. Burman,
A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty,
SIAM J. Numer. Anal. 43 (2005), no. 5, 2012–2033.
CrossrefGoogle Scholar

[9]

E. Burman, M. A. Fernández and P. Hansbo,
Continuous interior penalty finite element method for Oseen’s equations,
SIAM J. Numer. Anal. 44 (2006), no. 3, 1248–1274.
CrossrefGoogle Scholar

[10]

E. Burman and P. Hansbo,
Stabilized Crouzeix-Raviart element for the Darcy–Stokes problem,
Numer. Methods Partial Differential Equations 21 (2005), no. 5, 986–997.
CrossrefGoogle Scholar

[11]

E. Burman and P. Hansbo,
A stabilized non-conforming finite element method for incompressible flow,
Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 23–24, 2881–2899.
CrossrefGoogle Scholar

[12]

C. Carstensen,
Merging the Bramble–Pasciak–Steinbach and the Crouzeix–Thomée criterion for ${H}^{1}$-stability of the ${L}^{2}$-projection onto finite element spaces,
Math. Comp. 71 (2002), no. 237, 157–163.
Google Scholar

[13]

B. Cockburn, G. Kanschat and D. Schötzau,
The local discontinuous Galerkin method for the Oseen equations,
Math. Comp. 73 (2004), no. 246, 569–593.
Google Scholar

[14]

B. Cockburn, G. Kanschat and D. Schötzau,
A note on discontinuous Galerkin divergence-free solutions of the Navier–Stokes equations,
J. Sci. Comput. 31 (2007), no. 1–2, 61–73.
Web of ScienceCrossrefGoogle Scholar

[15]

B. Cockburn, G. Kanschat and D. Schötzau,
An equal-order DG method for the incompressible Navier–Stokes equations,
J. Sci. Comput. 40 (2009), no. 1–3, 188–210.
CrossrefWeb of ScienceGoogle Scholar

[16]

M. Crouzeix and V. Thomée,
The stability in ${L}_{p}$ and ${W}_{p}^{1}$ of the ${L}_{2}$-projection onto finite element function spaces,
Math. Comp. 48 (1987), no. 178, 521–532.
Google Scholar

[17]

H. Dallmann, D. Arndt and G. Lube,
Local projection stabilization for the Oseen problem,
IMA J. Numer. Anal. 36 (2016), no. 2, 796–823.
CrossrefWeb of ScienceGoogle Scholar

[18]

D. A. Di Pietro and A. Ern,
Mathematical Aspects of Discontinuous Galerkin Methods,
Math. Appl. (Berlin) 69,
Springer, Heidelberg, 2012.
Google Scholar

[19]

A. K. Dond and T. Gudi,
Patch-wise local projection stabilized finite element methods for convection-diffusion-reaction problem,
preprint.

[20]

A. Ern and J.-L. Guermond,
Theory and Practice of Finite Elements,
Appl. Math. Sci. 159,
Springer, New York, 2004.
Google Scholar

[21]

L. P. Franca, V. John, G. Matthies and L. Tobiska,
An inf-sup stable and residual-free bubble element for the Oseen equations,
SIAM J. Numer. Anal. 45 (2007), no. 6, 2392–2407.
Web of ScienceCrossrefGoogle Scholar

[22]

S. Ganesan, G. Matthies and L. Tobiska,
Local projection stabilization of equal order interpolation applied to the Stokes problem,
Math. Comp. 77 (2008), no. 264, 2039–2060.
CrossrefGoogle Scholar

[23]

V. Girault and P.-A. Raviart,
Finite Element Methods for Navier–Stokes Equations. Theory and Algorithms,
Springer Ser. Comput. Math. 5,
Springer, Berlin, 1986.
Google Scholar

[24]

V. John,
Finite Element Methods for Incompressible Flow Problems,
Springer Ser. Comput. Math. 51,
Springer, Cham, 2016.
Google Scholar

[25]

C. Johnson,
Numerical Solution of Partial Differential Equations by the Finite Element Method,
Cambridge University Press, Cambridge, 1987.
Google Scholar

[26]

P. Knobloch,
A generalization of the local projection stabilization for convection-diffusion-reaction equations,
SIAM J. Numer. Anal. 48 (2010), no. 2, 659–680.
Web of ScienceCrossrefGoogle Scholar

[27]

P. Knobloch and L. Tobiska,
Improved stability and error analysis for a class of local projection stabilizations applied to the Oseen problem,
Numer. Methods Partial Differential Equations 29 (2013), no. 1, 206–225.
Web of ScienceCrossrefGoogle Scholar

[28]

G. Matthies, P. Skrzypacz and L. Tobiska,
A unified convergence analysis for local projection stabilisations applied to the Oseen problem,
M2AN Math. Model. Numer. Anal. 41 (2007), no. 4, 713–742.
CrossrefGoogle Scholar

[29]

G. Matthies and L. Tobiska,
Local projection type stabilization applied to inf-sup stable discretizations of the Oseen problem,
IMA J. Numer. Anal. 35 (2015), no. 1, 239–269.
Web of ScienceCrossrefGoogle Scholar

[30]

J. Nitsche,
Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind,
Abh. Math. Semin. Univ. Hambg. 36 (1971), 9–15.
CrossrefGoogle Scholar

[31]

H.-G. Roos,
Robust numerical methods for singularly perturbed differential equations: A survey covering 2008–2012,
ISRN Appl. Math. 2012 (2012), Article ID 379547.
Google Scholar

[32]

H.-G. Roos, M. Stynes and L. Tobiska,
Robust Numerical Methods for Singularly Perturbed Differential Equations,
Springer, Berlin, 2008.
Google Scholar

[33]

L. Tobiska,
Finite element methods of streamline diffusion type for the Navier–Stokes equations,
Numerical Methods (Miskolc 1990),
Colloq. Math. Soc. János Bolyai 59,
North-Holland, Amsterdam (1991), 259–266.
Google Scholar

[34]

L. Tobiska and R. Verfürth,
Analysis of a streamline diffusion finite element method for the Stokes and Navier–Stokes equations,
SIAM J. Numer. Anal. 33 (1996), no. 1, 107–127.
CrossrefGoogle Scholar

[35]

S. Turek and A. Ouazzi,
Unified edge-oriented stabilization of nonconforming FEM for incompressible flow problems: Numerical investigations,
J. Numer. Math. 15 (2007), no. 4, 299–322.
Web of ScienceGoogle Scholar

[36]

J. Volker,
Finite Element Methods for Incompressible Flow Problems,
Springer Ser. Comput. Math. 51,
Springer, Cham, 2016.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.