[1]

N. Besse and D. Kröner,
Convergence of locally divergence-free discontinuous-Galerkin methods for the induction equations of the 2D-MHD system,
ESAIM Math. Model. Numer. Anal. 39 (2005), no. 6, 1177–1202.
CrossrefGoogle Scholar

[2]

J. U. Brackbill and D. C. Barnes,
The effect of nonzero $\nabla \cdot B$ on the numerical solution of the magnetohydrodynamic equations,
J. Comput. Phys. 35 (1980), no. 3, 426–430.
Google Scholar

[3]

F. Brezzi, B. Cockburn, L. D. Marini and E. Süli,
Stabilization mechanisms in discontinuous Galerkin finite element methods,
Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 25–28, 3293–3310.
CrossrefGoogle Scholar

[4]

E. Burman, A. Ern and M. A. Fernández,
Explicit Runge–Kutta schemes and finite elements with symmetric stabilization for first-order linear PDE systems,
SIAM J. Numer. Anal. 48 (2010), no. 6, 2019–2042.
CrossrefWeb of ScienceGoogle Scholar

[5]

P. G. Ciarlet,
The Finite Element Method for Elliptic Problems,
Stud. Math. Appl. 4,
North-Holland, Amsterdam, 1978.
Google Scholar

[6]

B. Cockburn and C. W. Shu,
The Runge–Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems,
J. Comput. Phys. 141 (1998), no. 2, 199–224.
CrossrefGoogle Scholar

[7]

D. A. Di Pietro and A. Ern,
Mathematical Aspects of Discontinuous Galerkin Methods,
Math. Appl. 69,
Springer, Berlin, 2012.
Google Scholar

[8]

L. C. Evans,
Partial Differential Equations,
Grad. Stud. Math. 19,
American Mathematical Society, Providence, 2007.
Google Scholar

[9]

F. G. Fuchs, K. H. Karlsen, S. Mishra and N. H. Risebro,
Stable upwind schemes for the magnetic induction equation,
ESAIM Math. Model. Numer. Anal. 43 (2009), no. 5, 825–852.
CrossrefGoogle Scholar

[10]

S. Gottlieb and C. W. Shu,
Total variation diminishing Runge–Kutta schemes,
Math. Comp. 67 (1998), no. 221, 73–85.
CrossrefGoogle Scholar

[11]

B. Gustafsson, H.-O. Kreiss and J. Oliger,
Time Dependent Problems and Difference Methods,
Pure Appl. Math. (Hoboken) 24,
John Wiley & Sons, Hoboken, 1995.
Google Scholar

[12]

E. Hairer, S. P. Nrsett and G. Wanner,
Solving Ordinary Differential Equations I: Nonstiff Problems,
Springer Ser. Comput. Math. 8,
Springer, Heidelberg, 2010.
Google Scholar

[13]

E. Hairer, S. P. Nrsett and G. Wanner,
Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems,
Springer Ser. Comput. Math. 14,
Springer, Heidelberg, 2010.
Google Scholar

[14]

P. Houston, I. Perugia, A. Schneebeli and D. Schötzau,
Interior penalty method for the indefinite time-harmonic Maxwell equations,
Numer. Math. 100 (2005), no. 3, 485–518.
CrossrefGoogle Scholar

[15]

P. Houston, I. Perugia and D. Schötzau,
Mixed discontinuous Galerkin approximation of the Maxwell operator,
SIAM J. Numer. Anal. 42 (2004), no. 1, 434–459.
CrossrefGoogle Scholar

[16]

U. Koley, S. Mishra, N. H. Risebro and M. Svärd,
Higher order finite difference schemes for the magnetic induction equations,
BIT 49 (2009), no. 2, 375–395.
CrossrefWeb of ScienceGoogle Scholar

[17]

U. Koley, S. Mishra, N. H. Risebro and M. Svärd,
Higher-order finite difference schemes for the magnetic induction equations with resistivity,
IMA J. Numer. Anal. 32 (2012), no. 3, 1173–1193.
CrossrefWeb of ScienceGoogle Scholar

[18]

H.-O. Kreiss and J. Lorenz,
Initial-Boundary Value Problems and Navier–Stokes Equations,
Pure Appl. Math. 136,
Academic Press, New York, 1989.
Google Scholar

[19]

B. Rivière,
Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation,
Front. Appl. Math.,
Society for Industrial and Applied Mathematics, Philadelphia, 2008.
Google Scholar

[20]

T. Sarkar,
Interior penalty discontinuous Galerkin method for the magnetic induction equation with resistivity,
Appl. Math. Comput. 314 (2017), 212–227.
Google Scholar

[21]

T. Sarkar and C. Praveen,
Stabilized discontinuous Galerkin method for the magnetic induction equation,
submitted.

[22]

E. Tadmor,
From semidiscrete to fully discrete: Stability of Runge–Kutta Schemes by the energy method. II,
SIAM Proc. Appl. Math. 109 (2002), 25–49.
Google Scholar

[23]

G. Tóth,
The $\nabla \cdot B=0$ constraint in shock-capturing magnetohydrodynamics codes,
J. Comput. Phys., 161 (2000), no. 2, 605–652.
Google Scholar

[24]

H. Yang and F. Li,
Stability analysis and error estimates of an exactly divergence-free method for the magnetic induction equations,
ESAIM Math. Model. Numer. Anal. 50 (2016), no. 4, 965–993.
Web of ScienceCrossrefGoogle Scholar

[25]

Q. Zhang and C. W. Shu,
Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin method for symmetrizable systems of conservation laws,
SIAM J. Numer. Anal. 44 (2006), no. 4, 1703–1720.
CrossrefGoogle Scholar

[26]

Q. Zhang and C. W. Shu,
Stability analysis and a priori error estimates of the third order explicit Runge–Kutta discontinuous Galerkin method for scalar conservation laws,
SIAM J. Numer. Anal. 48 (2010), no. 3, 1038–1063.
CrossrefWeb of ScienceGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.