Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Computational Methods in Applied Mathematics

Editor-in-Chief: Carstensen, Carsten

Managing Editor: Matus, Piotr

4 Issues per year


IMPACT FACTOR 2017: 0.658

CiteScore 2017: 1.05

SCImago Journal Rank (SJR) 2017: 1.291
Source Normalized Impact per Paper (SNIP) 2017: 0.893

Mathematical Citation Quotient (MCQ) 2017: 0.76

Online
ISSN
1609-9389
See all formats and pricing
More options …
Ahead of print

Issues

A Priori Error Analysis of a Discontinuous Galerkin Scheme for the Magnetic Induction Equation

Tanmay Sarkar
  • Corresponding author
  • Tata Instiute of Fundamental Research, Centre for Applicable Mathematics, Post Bag No. 6503, GKVK Post Office, Sharada Nagar, Chikkabommasandra, Bangalore 560065; and Department of Mathematics, Indian Institute of Technology Jammu, NH-44 Bypass Road, Jagti, Jammu 181 221, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-09-11 | DOI: https://doi.org/10.1515/cmam-2018-0032

Abstract

We perform the error analysis of a stabilized discontinuous Galerkin scheme for the initial boundary value problem associated with the magnetic induction equations using standard discontinuous Lagrange basis functions. In order to obtain the quasi-optimal convergence incorporating second-order Runge–Kutta schemes for time discretization, we need a strengthened 4/3-CFL condition (Δth4/3). To overcome this unusual restriction on the CFL condition, we consider the explicit third-order Runge–Kutta scheme for time discretization. We demonstrate the error estimates in L2-sense and obtain quasi-optimal convergence for smooth solution in space and time for piecewise polynomials with any degree l1 under the standard CFL condition.

Keywords: Discontinuous Galerkin Methods; Magnetic Induction; Explicit Runge–Kutta Method,Error Analysis; Rate of Convergence

MSC 2010: 65M60; 65M12; 65M15; 76W05

References

  • [1]

    N. Besse and D. Kröner, Convergence of locally divergence-free discontinuous-Galerkin methods for the induction equations of the 2D-MHD system, ESAIM Math. Model. Numer. Anal. 39 (2005), no. 6, 1177–1202. CrossrefGoogle Scholar

  • [2]

    J. U. Brackbill and D. C. Barnes, The effect of nonzero B on the numerical solution of the magnetohydrodynamic equations, J. Comput. Phys. 35 (1980), no. 3, 426–430. Google Scholar

  • [3]

    F. Brezzi, B. Cockburn, L. D. Marini and E. Süli, Stabilization mechanisms in discontinuous Galerkin finite element methods, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 25–28, 3293–3310. CrossrefGoogle Scholar

  • [4]

    E. Burman, A. Ern and M. A. Fernández, Explicit Runge–Kutta schemes and finite elements with symmetric stabilization for first-order linear PDE systems, SIAM J. Numer. Anal. 48 (2010), no. 6, 2019–2042. CrossrefWeb of ScienceGoogle Scholar

  • [5]

    P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Stud. Math. Appl. 4, North-Holland, Amsterdam, 1978. Google Scholar

  • [6]

    B. Cockburn and C. W. Shu, The Runge–Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems, J. Comput. Phys. 141 (1998), no. 2, 199–224. CrossrefGoogle Scholar

  • [7]

    D. A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Math. Appl. 69, Springer, Berlin, 2012. Google Scholar

  • [8]

    L. C. Evans, Partial Differential Equations, Grad. Stud. Math. 19, American Mathematical Society, Providence, 2007. Google Scholar

  • [9]

    F. G. Fuchs, K. H. Karlsen, S. Mishra and N. H. Risebro, Stable upwind schemes for the magnetic induction equation, ESAIM Math. Model. Numer. Anal. 43 (2009), no. 5, 825–852. CrossrefGoogle Scholar

  • [10]

    S. Gottlieb and C. W. Shu, Total variation diminishing Runge–Kutta schemes, Math. Comp. 67 (1998), no. 221, 73–85. CrossrefGoogle Scholar

  • [11]

    B. Gustafsson, H.-O. Kreiss and J. Oliger, Time Dependent Problems and Difference Methods, Pure Appl. Math. (Hoboken) 24, John Wiley & Sons, Hoboken, 1995. Google Scholar

  • [12]

    E. Hairer, S. P. Nrsett and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, Springer Ser. Comput. Math. 8, Springer, Heidelberg, 2010. Google Scholar

  • [13]

    E. Hairer, S. P. Nrsett and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer Ser. Comput. Math. 14, Springer, Heidelberg, 2010. Google Scholar

  • [14]

    P. Houston, I. Perugia, A. Schneebeli and D. Schötzau, Interior penalty method for the indefinite time-harmonic Maxwell equations, Numer. Math. 100 (2005), no. 3, 485–518. CrossrefGoogle Scholar

  • [15]

    P. Houston, I. Perugia and D. Schötzau, Mixed discontinuous Galerkin approximation of the Maxwell operator, SIAM J. Numer. Anal. 42 (2004), no. 1, 434–459. CrossrefGoogle Scholar

  • [16]

    U. Koley, S. Mishra, N. H. Risebro and M. Svärd, Higher order finite difference schemes for the magnetic induction equations, BIT 49 (2009), no. 2, 375–395. CrossrefWeb of ScienceGoogle Scholar

  • [17]

    U. Koley, S. Mishra, N. H. Risebro and M. Svärd, Higher-order finite difference schemes for the magnetic induction equations with resistivity, IMA J. Numer. Anal. 32 (2012), no. 3, 1173–1193. CrossrefWeb of ScienceGoogle Scholar

  • [18]

    H.-O. Kreiss and J. Lorenz, Initial-Boundary Value Problems and Navier–Stokes Equations, Pure Appl. Math. 136, Academic Press, New York, 1989. Google Scholar

  • [19]

    B. Rivière, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation, Front. Appl. Math., Society for Industrial and Applied Mathematics, Philadelphia, 2008. Google Scholar

  • [20]

    T. Sarkar, Interior penalty discontinuous Galerkin method for the magnetic induction equation with resistivity, Appl. Math. Comput. 314 (2017), 212–227. Google Scholar

  • [21]

    T. Sarkar and C. Praveen, Stabilized discontinuous Galerkin method for the magnetic induction equation, submitted.

  • [22]

    E. Tadmor, From semidiscrete to fully discrete: Stability of Runge–Kutta Schemes by the energy method. II, SIAM Proc. Appl. Math. 109 (2002), 25–49. Google Scholar

  • [23]

    G. Tóth, The B=0 constraint in shock-capturing magnetohydrodynamics codes, J. Comput. Phys., 161 (2000), no. 2, 605–652. Google Scholar

  • [24]

    H. Yang and F. Li, Stability analysis and error estimates of an exactly divergence-free method for the magnetic induction equations, ESAIM Math. Model. Numer. Anal. 50 (2016), no. 4, 965–993. Web of ScienceCrossrefGoogle Scholar

  • [25]

    Q. Zhang and C. W. Shu, Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin method for symmetrizable systems of conservation laws, SIAM J. Numer. Anal. 44 (2006), no. 4, 1703–1720. CrossrefGoogle Scholar

  • [26]

    Q. Zhang and C. W. Shu, Stability analysis and a priori error estimates of the third order explicit Runge–Kutta discontinuous Galerkin method for scalar conservation laws, SIAM J. Numer. Anal. 48 (2010), no. 3, 1038–1063. CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2018-02-13

Revised: 2018-07-20

Accepted: 2018-08-08

Published Online: 2018-09-11


Citation Information: Computational Methods in Applied Mathematics, ISSN (Online) 1609-9389, ISSN (Print) 1609-4840, DOI: https://doi.org/10.1515/cmam-2018-0032.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in