Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter March 1, 2006

On the way to understand biological complexity in plants: S-nutrition as a case study for systems biology

  • Holger Hesse EMAIL logo and Rainer Hoefgen

Abstract

The establishment of technologies for high-throughput DNA sequencing (genomics), gene expression (transcriptomics), metabolite and ion analysis (metabolomics/ionomics) and protein analysis (proteomics) carries with it the challenge of processing and interpreting the accumulating data sets. Publicly accessible databases and newly development and adapted bioinformatic tools are employed to mine this data in order to filter relevant correlations and create models describing physiological states. These data allow the reconstruction of networks of interactions of the various cellular components as enzyme activities and complexes, gene expression, metabolite pools or pathway flux modes. Especially when merging information from transcriptomics, metabolomics and proteomics into consistent models, it will be possible to describe and predict the behaviour of biological systems, for example with respect to endogenous or environmental changes. However, to capture the interactions of network elements requires measurements under a variety of conditions to generate or refine existing models. The ultimate goal of systems biology is to understand the molecular principles governing plant responses and consistently explain plant physiology.

[1] Schuster, S., Fell, D.A. and Dandekar, T. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat. Biotechnol. 18 (2000) 267–268. http://dx.doi.org/10.1038/7378610.1038/73786Search in Google Scholar

[2] Ideker, T., Thorsson, V., Ranish, J.A., Christmas, R., Buhler, J., Eng, J.K., Bumgarner, R., Goodlett, D.R., Aebersold, R. and Hood, L. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292 (2001) 929–934. http://dx.doi.org/10.1126/science.292.5518.92910.1126/science.292.5518.929Search in Google Scholar

[3] Papin, J.A., Price, N.D., Wiback, S.J., Fell, D.A. and Palsson, B.O. Metabolic pathways in the post-genome era. Trends Biochem. Sci. 28 (2003) 250–258. http://dx.doi.org/10.1016/S0968-0004(03)00064-110.1016/S0968-0004(03)00064-1Search in Google Scholar

[4] Holtorf, H., Guitton, M.-C. and Reski, R. Plant functional genomics. Naturwissenschaften 89 (2002) 235–249. http://dx.doi.org/10.1007/s00114-002-0321-310.1007/s00114-002-0321-3Search in Google Scholar

[5] Oliver, S.G., Winson, M.K., Kell, D.B. and Baganz, F. Systematic functional analysis of the yeast genome. Trends Biotechnol. 16 (1998) 373–378. http://dx.doi.org/10.1016/S0167-7799(98)01214-110.1016/S0167-7799(98)01214-1Search in Google Scholar

[6] Blackstock, W.P. and Weir, M.P. Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol. 17 (1999) 121–127. http://dx.doi.org/10.1016/S0167-7799(98)01245-110.1016/S0167-7799(98)01245-1Search in Google Scholar

[7] Thiellement, H., Bahrman, N., Damerval, C., Plomion, C., Rossingnol, M., Santoni, V., de Vienne, D. and Zivy, M. Proteomics for genetic and physiological studies in plants. Electrophoresis 20 (1999) 2013–2026. http://dx.doi.org/10.1002/(SICI)1522-2683(19990701)20:10<2013::AID-ELPS2013>3.0.CO;2-#Search in Google Scholar

[8] van Wijk, K.J. Update on plant proteomics. Challenges and prospects of plant proteomics. Plant Physiol. 126 (2001) 501–508. http://dx.doi.org/10.1104/pp.126.2.50110.1104/pp.126.2.501Search in Google Scholar

[9] Fiehn, O., Kopka, J., Dörmann, P., Altmann, T., Trethewey, R.N. and Willmitzer, L. Metabolite profiling for plant functional genomics. Nat. Biotechnol. 18 (2000) 1157–1161. http://dx.doi.org/10.1038/8113710.1038/81137Search in Google Scholar

[10] Trethewey, R.N., Krotzky, A.J. and Willmitzer, L. Metabolic profiling: a rosetta stone for genomics? Curr. Opin. Plant Biol. 2 (1999) 83–85. http://dx.doi.org/10.1016/S1369-5266(99)80017-X10.1016/S1369-5266(99)80017-XSearch in Google Scholar

[11] Trethewey, R.N. Gene discovery via metabolic profiling. Curr. Opin. Biotechnol. 12 (2001) 135–138. http://dx.doi.org/10.1016/S0958-1669(00)00187-710.1016/S0958-1669(00)00187-7Search in Google Scholar

[12] Trethewey, R.N. Metabolite profiling as an aid to metabolic engineering in plants. Curr. Opin. Plant Biol. 7 (2004) 196–201. http://dx.doi.org/10.1016/j.pbi.2003.12.00310.1016/j.pbi.2003.12.003Search in Google Scholar PubMed

[13] Harmer, S.L., Hogenesch, L.B., Straume, M., Chang, H.S., Han, B., Zhu, T., Wang, X., Kreps, J.A. and Kay, S.A. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290 (2000) 2110–2113. http://dx.doi.org/10.1126/science.290.5499.211010.1126/science.290.5499.2110Search in Google Scholar PubMed

[14] Goda, H., Shimada, Y., Asami, T., Fujioka, S. and Yoshida, S. Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol. 130 (2002) 1319–1334. http://dx.doi.org/10.1104/pp.01125410.1104/pp.011254Search in Google Scholar PubMed PubMed Central

[15] Müssig, C., Fischer, S. and Altmann, T. Brassinosteroid-regulated gene expression. Plant Physiol. 129 (2002) 1241–1251. http://dx.doi.org/10.1104/pp.01100310.1104/pp.011003Search in Google Scholar PubMed PubMed Central

[16] Rashotte, A.M., Carson, S.D., To, J.P. and Kieber, J.J. Expression profiling of cytokinin action in Arabidopsis. Plant Physiol. 132 (2003) 1998–2011. http://dx.doi.org/10.1104/pp.103.02143610.1104/pp.103.021436Search in Google Scholar PubMed PubMed Central

[17] Kreps, J.A., Wu, Y., Chang, H.S., Zhu, T., Wang, X. and Harper, J. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol. 130 (2002) 2129–2141. http://dx.doi.org/10.1104/pp.00853210.1104/pp.008532Search in Google Scholar PubMed PubMed Central

[18] Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Taji, T., Yamaguchi-Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y. and Shinozaki, K. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J. 31 (2002) 279–292. http://dx.doi.org/10.1046/j.1365-313X.2002.01359.x10.1046/j.1365-313X.2002.01359.xSearch in Google Scholar

[19] Hammond J.P., Bennett, M.J., Bowen, H.C., Broadley, M.R., Eastwood, D.C., May, S.T., Rahn, C., Swarup, R., Woolaway, K.E. and White, P.J. Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol. 132 (2003) 578–596. http://dx.doi.org/10.1104/pp.103.02094110.1104/pp.103.020941Search in Google Scholar PubMed PubMed Central

[20] Oono, Y., Seki, M., Nanjo, T., Narusaka, M., Fujita, M., Satoh, R., Satou, M., Sakurai, T., Ishida, J., Akiyama, K., Iida, K., Maruyama, K., Satoh, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca. 7000 full-length cDNA microarray. Plant J. 34 (2003) 868–887. http://dx.doi.org/10.1046/j.1365-313X.2003.01774.x10.1046/j.1365-313X.2003.01774.xSearch in Google Scholar PubMed

[21] Menges, M., Hennig, L., Gruissem, W. and Murray, J.A.H. Cell cycleregulated gene expression in Arabidopsis. J. Biol. Chem. 277 (2002) 41987–42002. http://dx.doi.org/10.1074/jbc.M20757020010.1074/jbc.M207570200Search in Google Scholar PubMed

[22] Tepperman, J.M., Zhu, T., Chang, H.S., Wang, X. and Quail, P.H. Multiple transcription-factor genes are early targets of phytochrome A signaling. Proc. Natl. Acad. Sci. USA 98 (2001) 9437–9442. http://dx.doi.org/10.1073/pnas.16130099810.1073/pnas.161300998Search in Google Scholar PubMed PubMed Central

[23] Che, P., Gingerich, D.J., Lall, S. and Howell, S.H. Global and hormone-induced gene expression changes during shoot development in Arabidopsis. Plant Cell 14 (2002) 2771–2785. http://dx.doi.org/10.1105/tpc.00666810.1105/tpc.006668Search in Google Scholar PubMed PubMed Central

[24] Honys, D. and Twell, D. Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol. 132 (2003) 640–652. http://dx.doi.org/10.1104/pp.103.02092510.1104/pp.103.020925Search in Google Scholar PubMed PubMed Central

[25] Köhler, C., Hennig, L., Spillane, C., Pien, S., Gruissem, W. and Grossniklaus, U. The Polycomb-group protein MEDEA regulates seed development by controlling expression of the MADS-box gene PHERES1. Genes Dev. 17 (2003) 1540–1553. http://dx.doi.org/10.1101/gad.25740310.1101/gad.257403Search in Google Scholar PubMed PubMed Central

[26] Puthoff, D.P., Nettleton, D., Rodermel, S.R. and Baum, T.J. Arabidopsis gene expression changes during cyst nematode parasitism revealed by statistical analyses of microarray expression profiles. Plant J. 33 (2003) 911–921. http://dx.doi.org/10.1046/j.1365-313X.2003.01677.x10.1046/j.1365-313X.2003.01677.xSearch in Google Scholar PubMed

[27] Tao, Y., Xie, Z., Chen, W., Glazebrook, J., Chang, H.S., Han, B., Zhu, T., Zou, G. and Katagiri, F. Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell 15 (2003) 317–330. http://dx.doi.org/10.1105/tpc.00759110.1105/tpc.007591Search in Google Scholar PubMed PubMed Central

[28] Hampton, C.R., Bowen, H.C., Broadley, M.R., Hammond, J.P., Mead, A., Payne, K.A., Pritchard, J. and White, P.J. Cesium Toxicity in Arabidopsis. Plant Physiol. 136 (2004) 3824–3837. http://dx.doi.org/10.1104/pp.104.04667210.1104/pp.104.046672Search in Google Scholar PubMed PubMed Central

[29] Sahr, T., Voigt, G., Paretzke, H.G., Schramel, P. and Ernst, D. Caesium-affected gene expression in Arabidopsis thaliana. New Phytologist 165 (2005) 747–754. http://dx.doi.org/10.1111/j.1469-8137.2004.01282.x10.1111/j.1469-8137.2004.01282.xSearch in Google Scholar PubMed

[30] Laule, O., Fürholz, A., Chang, H.S., Zhu, T., Wang, X., Heifetz, P.B., Gruissem, W. and Lange, M. Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 100 (2003) 6866–6871. http://dx.doi.org/10.1073/pnas.103175510010.1073/pnas.1031755100Search in Google Scholar PubMed PubMed Central

[31] Wang, R., Guegler, K., LaBrie, S.T. and Crawford, N.M. Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell 12 (2000) 1491–1509. http://dx.doi.org/10.1105/tpc.12.8.149110.1105/tpc.12.8.1491Search in Google Scholar PubMed PubMed Central

[32] Wang, Y.-H., Garvin, D.F. and Kochian, L.V. Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiol. 127 (2001) 345–359. http://dx.doi.org/10.1104/pp.127.1.34510.1104/pp.127.1.345Search in Google Scholar PubMed PubMed Central

[33] Colebatch, G., Kloska, S., Trevaskis, B., Freund, S., Altmann, T. and Udvardi, M.K. Novel aspects of symbiotic nitrogen fixation uncovered by transcript profiling with cDNA arrays. Mol. Plant Microbe Interact. 15 (2002) 411–420. Search in Google Scholar

[34] Wang, Y.-H., Garvin, D.F. and Kochian, L.V. Rapid induction of regulatory and transporter genes in response to phosphorus, potassium, and iron deficiencies in tomato roots. Evidence for cross talk and root/rhizosphere-mediated signals. Plant Physiol. 130 (2002) 1361–1370. http://dx.doi.org/10.1104/pp.00885410.1104/pp.008854Search in Google Scholar PubMed PubMed Central

[35] Thimm, O., Essigmann, B., Kloska, S., Altmann, T. and Buckhout, T.J. Response of Arabidopsis to iron deficiency stress as revealed by microarray analysis. Plant Physiol. 127 (2001) 1030–1043. http://dx.doi.org/10.1104/pp.127.3.103010.1104/pp.010191Search in Google Scholar

[36] Negishi, T., Nakanishi, H., Yazaki, J., Kishimoto, N., Fujii, F., Shimbo, K., Yamamoto, K., Sakata, K., Sasaki, T., Kikuchi, S., Mori, S. and Nishizawa, N.K. cDNA microarray analysis of gene expression during Fe-deficiency stress in barley suggests that polar transport of vesicles is implicated in phytosiderophore secretion in Fe-deficient barley roots. Plant J. 30 (2002) 83–94. http://dx.doi.org/10.1046/j.1365-313X.2002.01270.x10.1046/j.1365-313X.2002.01270.xSearch in Google Scholar

[37] Wang, R., Okamoto, M., Xing, X. and Crawford, N.M. Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1,000 rapidly responding genes and new linkages to glucose, trehalose-6-phosphate, Iron, and sulfate metabolism. Plant Physiol. 132 (2003) 556–567. http://dx.doi.org/10.1104/pp.103.02125310.1104/pp.103.021253Search in Google Scholar PubMed PubMed Central

[38] Maathuis, F.J.M., Filatov, V., Herzyk, P., Krijger, G.C., Axelsen, K.B., Chen, S., Green, B.J., Li, Y., Madagan, K.L., Sánchez-Fernández, R., Forde, B.G., Palmgren, M.G., Rea, P.A., Williams, L.E., Sanders, D. and Amtmann, A. Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. Plant J. 35 (2003) 675–692. http://dx.doi.org/10.1046/j.1365-313X.2003.01839.x10.1046/j.1365-313X.2003.01839.xSearch in Google Scholar PubMed

[39] Hirai, Y.M., Fujiwara, T., Awazuhara, M., Kimura, T., Masaaki, N. and Saito, K. Global expression profiling of sulphur-starved Arabidopsis by DNA macroarray reveals the role of O-acetyl-L-serine as a general regulator of gene expression in response to sulphur nutrition. Plant J. 33 (2003) 651–663. http://dx.doi.org/10.1046/j.1365-313X.2003.01658.x10.1046/j.1365-313X.2003.01658.xSearch in Google Scholar PubMed

[40] Maruyama-Nakashita, A., Inoue, E., Watanabe-Takahashi, A., Yamaya, T. and Takahashi, H. Transcriptome profiling of sulphur-responsive genes in Arabidopsis reveals global effects of sulphur nutrition on multiple metabolic pathways. Plant Physiol. 132 (2003) 597–605. http://dx.doi.org/10.1104/pp.102.01980210.1104/pp.102.019802Search in Google Scholar PubMed PubMed Central

[41] Nikiforova, V., Freitag, J., Kempa, S., Adamik, M., Hesse, H. and Hoefgen, R. Transcriptome analysis of sulphur depletion in Arabidopsis thaliana: interlacing of biosynthetic pathways provides response specificity. Plant J. 33 (2003) 633–650. http://dx.doi.org/10.1046/j.1365-313X.2003.01657.x10.1046/j.1365-313X.2003.01657.xSearch in Google Scholar PubMed

[42] Maathuis, F.J.M. and Amtmann, A. Transcriptional profiling of membrane transporters. in: Plant Nutritional Genomics, (Broadley, M. and White, PJ. Eds.), Plant Sciences Division, School of Biosciences, University of Nottingham, UK, 2005, 170–200. Search in Google Scholar

[43] Nikiforova, V., Gakière, B., Kempa, S., Adamik, M., Willmitzer, L., Hesse, H. and Hoefgen, R. Towards dissecting nutrient metabolism in plants: a systems biology case study on sulfur metabolism. J. Exp. Bot. 55 (2004) 1861–1870. http://dx.doi.org/10.1093/jxb/erh17710.1093/jxb/erh177Search in Google Scholar PubMed

[44] Fiehn, O. Metabolomics — the link between genotypes and phenotypes. Plant Mol. Biol. 48 (2002) 155–171. http://dx.doi.org/10.1023/A:101371390583310.1023/A:1013713905833Search in Google Scholar

[45] Sumner, L.W., Mendes, P. and Dixon, R.A. Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62 (2003) 817–836. http://dx.doi.org/10.1016/S0031-9422(02)00708-210.1016/S0031-9422(02)00708-2Search in Google Scholar

[46] Stitt, M. and Fernie, A.R. From measurements of metabolites to metabolomics: an ‘on the fly’ perspective illustrated by recent studies of carbon-nitrogen interactions. Curr. Opin. Biotechnol. 14 (2003) 136–144. http://dx.doi.org/10.1016/S0958-1669(03)00023-510.1016/S0958-1669(03)00023-5Search in Google Scholar

[47] Nielsen J. and Oliver S. The next wave in metabolome analysis. Trends Biotechnol. 23 (2005) 544–546. http://dx.doi.org/10.1016/j.tibtech.2005.08.00510.1016/j.tibtech.2005.08.005Search in Google Scholar PubMed

[48] The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408 (2000) 796–815. 10.1038/35048692Search in Google Scholar PubMed

[49] Bino, R.J., Hall, R.D., Fiehn, O., Kopka, J., Saito, K., Draper, J., Nikolau, B.J., Mendes, P., Roessner-Tunali, U., Beale, M.H., Trethewey, R.N., Lange, B.M., Wurtele, E.S. and Sumner, L.W. Potential of metabolomics as a functional genomics tool. Trends Plant Sci. 9 (2004) 418–425. http://dx.doi.org/10.1016/j.tplants.2004.07.00410.1016/j.tplants.2004.07.004Search in Google Scholar PubMed

[50] Jenkins, H., Hardy, N., Beckmann, M., Draper, J., Smith, A.R., Taylor, J., Fiehn, O., Goodacre, R., Bino, R.J., Hall, R., Kopka, J., Lane, G.A., Lange, B.M., Liu, J.R., Mendes, P., Nikolau, B.J., Oliver, S.G., Paton, N.W., Rhee, S., Roessner-Tunali, U., Saito, K., Smedsgaard, J., Sumner, L.W., Wang, T., Walsh, S., Wurtele, E.S. and Kell, D.B.A. Proposed framework for the description of plant metabolomics experiments and their results. Nature Biotechnol. 22 (2004) 1601–1606. http://dx.doi.org/10.1038/nbt104110.1038/nbt1041Search in Google Scholar PubMed

[51] Schauer, N., Steinhauser, D., Strelkov, S., Schomburg, D., Allison, G., Moritz, T., Lundgren, K., Roessner-Tunali, U., Forbes, M.G., Willmitzer, L., Fernie, A.R. and Kopka, J. GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Lett. 579 (2005) 1332–1337. http://dx.doi.org/10.1016/j.febslet.2005.01.02910.1016/j.febslet.2005.01.029Search in Google Scholar PubMed

[52] Roessner, U., Wagner, C., Kopka, J., Trethewey, R.N. and Willmitzer, L. Technical advance: simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J. 23 (2000) 131–142. http://dx.doi.org/10.1046/j.1365-313x.2000.00774.x10.1046/j.1365-313x.2000.00774.xSearch in Google Scholar PubMed

[53] Roessner, U., Luedemann, A., Brust, D., Fiehn, O., Linke, T., Willmitzer, L. and Fernie, A.R. Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13 (2001) 11–29. http://dx.doi.org/10.1105/tpc.13.1.1110.1105/tpc.13.1.11Search in Google Scholar PubMed PubMed Central

[54] Wagner, C., Sefkow, M. and Kopka, J. Construction and application of a mass spectral and retention time index database generated from plant GC/EI-TOF-MS metabolite profiles. Phytochemistry 62 (2003) 887–900. http://dx.doi.org/10.1016/S0031-9422(02)00703-310.1016/S0031-9422(02)00703-3Search in Google Scholar

[55] Fiehn, O. and Weckwerth, W. Deciphering metabolic networks. Eur. J. Biochem. 270 (2003) 579–588. http://dx.doi.org/10.1046/j.1432-1033.2003.03427.x10.1046/j.1432-1033.2003.03427.xSearch in Google Scholar

[56] Ward, J.L., Harris, C., Lewis, J. and Beale, M.H. Assessment of 1H-NMR spectroscopy and multivariate analysis as a technique for metabolite fingerprinting of Arabidopsis thaliana. Phytochemistry 62 (2003) 949–957. http://dx.doi.org/10.1016/S0031-9422(02)00705-710.1016/S0031-9422(02)00705-7Search in Google Scholar

[57] Ott, K.-H., Aranibar, N., Singh, B. and Stockton, G. Metabolomics classifies pathways affected by bioactive compounds. Artificial neural network classification of NMR spectra of plant extracts. Phytochemistry 62 (2003) 971–985. http://dx.doi.org/10.1016/S0031-9422(02)00717-310.1016/S0031-9422(02)00717-3Search in Google Scholar

[58] Defernez, M. and Colquhoun, I.J. Factors affecting the robustness of metabolite fingerprinting using 1H-NMR spectra. Phytochemistry 62 (2003) 1009–1017. http://dx.doi.org/10.1016/S0031-9422(02)00704-510.1016/S0031-9422(02)00704-5Search in Google Scholar

[59] Le Gall, G., Colquhoun, I.J., Davis, A.L., Collins, G.J. and Verhoeyen, M.E. Metabolite profiling of tomato (Lycopersicon esculentum) using 1H-NMR spectroscopy as a tool to detect potential unintended effects following a genetic modification. J. Agric. Food Chem. 51 (2003) 2447–2456. http://dx.doi.org/10.1021/jf025996710.1021/jf0259967Search in Google Scholar PubMed

[60] Soga, T., Ueno, Y., Naraoka, H., Ohashi, Y., Tomita, M. and Nishioka, T. Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. Anal. Chem. 74 (2002) 2233–2239. http://dx.doi.org/10.1021/ac020064n10.1021/ac020064nSearch in Google Scholar PubMed

[61] Tolstikov, V.V. and Fiehn, O. Analysis of highly polar compounds of plant origin: combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry. Anal. Biochem. 301 (2002) 298–307. http://dx.doi.org/10.1006/abio.2001.551310.1006/abio.2001.5513Search in Google Scholar PubMed

[62] Rea, P.A. Ion genomics. Nature Biotechnol. 21 (2003) 1149–1151. http://dx.doi.org/10.1038/nbt1003-114910.1038/nbt1003-1149Search in Google Scholar PubMed

[63] Lahner, B., Gong, J., Mahmoudian, M., Smith, E.L., Abid, K.B., Rogers, E.E., Guerinot, M.L., Harper, J.F., Ward, J.M., McIntyre, L., Schroeder, J.I. and Salt, D.E. Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana. Nature Biotechnol. 21 (2003) 1215–1221. http://dx.doi.org/10.1038/nbt86510.1038/nbt865Search in Google Scholar PubMed

[64] Salt, D.E. Update on Plant Ionomics. Plant Physiol. 136 (2004) 2451–2456. http://dx.doi.org/10.1104/pp.104.04775310.1104/pp.104.047753Search in Google Scholar

[65] Lahner, B. and Salt, D.E. Mapping links between the genome and ionome in plants. in: Plant Nutritional Genomics, (Broadley, M. and White, P.J. Eds.), Plant Sciences Division, School of Biosciences, University of Nottingham, UK, 2005, 150–170. Search in Google Scholar

[66] Nikiforova, V.J., Kopka, J., Tolstikov, V., Fiehn, O., Hopkins, L., Hawkesford, M.J., Hesse, H. and Hoefgen, R. Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants. Plant Physiol. 138 (2005) 304–318. http://dx.doi.org/10.1104/pp.104.05379310.1104/pp.104.053793Search in Google Scholar

[67] Molloy, M.P., Phadke, N.D., Maddock, J.R. and Andrews, P.C. Two-dimensional electrophoresis and peptide mass fingerprinting of bacterial outer membrane proteins. Electrophoresis 22 (2001) 1686–1696. http://dx.doi.org/10.1002/1522-2683(200105)22:9<1686::AID-ELPS1686>3.0.CO;2-L10.1002/1522-2683(200105)22:9<1686::AID-ELPS1686>3.0.CO;2-LSearch in Google Scholar

[68] Lester, P. and Hubbard, S. Comparative bioinformatic analysis of complete protecomes and protein parameters for cross-species identification in proteomics. Proteomics 2 (2002) 1392–1405. http://dx.doi.org/10.1002/1615-9861(200210)2:10<1392::AID-PROT1392>3.0.CO;2-L10.1002/1615-9861(200210)2:10<1392::AID-PROT1392>3.0.CO;2-LSearch in Google Scholar

[69] Görg, A., Obermaier, C., Boguth, G., Harder, A., Scheibe, B., Wildgruber, R. and Weiss W. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21 (2000) 1037–1053. http://dx.doi.org/10.1002/(SICI)1522-2683(20000401)21:6<1037::AID-ELPS1037>3.0.CO;2-V10.1002/(SICI)1522-2683(20000401)21:6<1037::AID-ELPS1037>3.0.CO;2-VSearch in Google Scholar

[70] Wolters, D.A., Washburn, M.P. and Yates, J.R. 3rd. An automated multidimensional protein identification technology for shotgun proteomics. Anal. Chem. 73 (2001) 5683–5690. http://dx.doi.org/10.1021/ac010617e10.1021/ac010617eSearch in Google Scholar

[71] Link, A.J., Eng, J., Schieltz, D.M., Carmack, E., Mize, G.J., Morris, D.R., Garvik, B.M. and Yates, J.R. 3rd. Direct analysis of protein complexes using mass spectrometry. Nature Biotechnol. 17 (1999) 676–682. http://dx.doi.org/10.1038/1089010.1038/10890Search in Google Scholar

[72] Shen, Y. and Smith, R. Proteomics based on high-efficiency capillary separations. Electrophoresis 23 (2002) 3106–3124. http://dx.doi.org/10.1002/1522-2683(200209)23:18<3106::AID-ELPS3106>3.0.CO;2-Y10.1002/1522-2683(200209)23:18<3106::AID-ELPS3106>3.0.CO;2-YSearch in Google Scholar

[73] Jönsson, H., Shapiro, B.E., Meyerowitz, E.M. and Mjolsness, E. (2003) Signaling in multicellular models of plant development. In: On Growth, Form, and Computers (Kumar, S., Bentley, P.J., Eds.) Academic Press, London, UK, 156–161. Search in Google Scholar

[74] Stelling, J., Klamt, S., Bettenbrock, K., Schuster, S. and Gilles, E.D. Metabolic network structure determines key aspects of functionality and regulation. Nature 420 (2002) 190–193. http://dx.doi.org/10.1038/nature0116610.1038/nature01166Search in Google Scholar

[75] Lee, T.I., Rinaldi, N.J., Robert, F., Odom, D.T., Ziv, B.-J., Gerber, G.K., Hannett, N.M., Harbison, C., Thompson, C.M., Simon, I., Zeitlinger, J., Jennings, E.G., Murray, H.L., Gordon, D.B., Ren, B., Wyrick, J.J., Tagne, J.-B., Volkert, T.L., Fraenkel, E., Gifford, D.K. and Young, R.A. Transcriptional Regulatory Networks in Saccharomyces cerevisiae. Science 298 (2002) 799–804. http://dx.doi.org/10.1126/science.107509010.1126/science.1075090Search in Google Scholar

[76] Buckhout, T.J. and Thimm, O. Insights into metabolism obtained from microarray analysis. Curr. Opin. Plant Biol. 6 (2003) 288–296. http://dx.doi.org/10.1016/S1369-5266(03)00040-210.1016/S1369-5266(03)00040-2Search in Google Scholar

[77] Girke, T., Ozkan, M., Carter, D. and Raikhel, N.V. Towards a modeling infrastructure for studying plant cells. Plant Physiol. 132 (2003) 410–414. http://dx.doi.org/10.1104/pp.103.02210310.1104/pp.103.022103Search in Google Scholar PubMed PubMed Central

[78] Girke, T., Todd, J., Ruuska, S., White, J., Benning, C. and Ohlrogge, J. Microarray analysis of developing Arabidopsis seeds. Plant Physiol. 124 (2000) 1570–1581. http://dx.doi.org/10.1104/pp.124.4.157010.1104/pp.124.4.1570Search in Google Scholar PubMed PubMed Central

[79] Jasny, B.R. and Ray, L.B. Life and the art of networks. Science 301 (2003) 1863. http://dx.doi.org/10.1126/science.301.5641.186310.1126/science.301.5641.1863Search in Google Scholar

[80] Bray, D. Molecular networks: The top-down view. Science 301 (2003) 1864–1865. http://dx.doi.org/10.1126/science.108911810.1126/science.1089118Search in Google Scholar PubMed

[81] Alon, U. Biological networks: The tinkerer as an engineer. Science 301 (2003) 1866–1867. http://dx.doi.org/10.1126/science.108907210.1126/science.1089072Search in Google Scholar PubMed

[82] Askenazi, M., Driggers, E.M., Holtzman, D.A., Norman, T.C., Iverson, S., Zimmer, D.P., Boers, M.E., Blomquist, P.R., Martinez, E.J., Monreal, A.W., Feibelman, T.P., Mayorga, M.E., Maxon, M.E., Sykes, K., Tobin, J.V., Cordero, E., Salama, S.R., Trueheart, J., Royer, J.C. and Madden, K.T. Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains. Nature Biotechnol. 21 (2003) 150–156. http://dx.doi.org/10.1038/nbt78110.1038/nbt781Search in Google Scholar PubMed

[83] Urbanczyk-Wochniak, E., Luedemann, A., Kopka, J., Selbig, J., Roessner-Tunali, U., Willmitzer, L. and Fernie, A.R. Parallel analysis of transcript and metabolic profiles: a new approach in systems biology. EMBO Rep. 4 (2003) 989–993. http://dx.doi.org/10.1038/sj.embor.embor94410.1038/sj.embor.embor944Search in Google Scholar PubMed PubMed Central

[84] Daub, C.O., Kloska, S. and Selbig, J. MetaGeneAlyse: analysis of integrated transcriptional and metabolite data. Bioinformatics 19 (2003) 2332–2333. http://dx.doi.org/10.1093/bioinformatics/btg32110.1093/bioinformatics/btg321Search in Google Scholar PubMed

[85] Thimm, O., Bläsing, O., Gibon, Y., Nagel, A., Meyer, S., Krüger, P., Müller, L.A., Rhee, S.Y. and Stitt, M. MapMan: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 37 (2004) 914–939. http://dx.doi.org/10.1111/j.1365-313X.2004.02016.x10.1111/j.1365-313X.2004.02016.xSearch in Google Scholar

[86] Kitano, H. Systems biology: A brief overview. Science 295 (2002) 1662–1664. http://dx.doi.org/10.1126/science.106949210.1126/science.1069492Search in Google Scholar PubMed

[87] Hirai, M.Y., Yano, M., Goodenowe, D.B., Kanaya, S., Kimura, T., Awazuhara, M., Arita, M., Fujiwara, T. and Saito, K. Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proc. Nat. Acad. Sci. USA 101 (2004) 10205–10210. http://dx.doi.org/10.1073/pnas.040321810110.1073/pnas.0403218101Search in Google Scholar PubMed PubMed Central

[88] Nikiforova, V.J., Daub, C.O., Hesse, H., Willmitzer, L. and Hoefgen, R. Integrative gene-metabolite network with implemented causality deciphers informational fluxes of sulphur stress response. J. Exp. Bot. 56 (2005) 1887–1896. http://dx.doi.org/10.1093/jxb/eri17910.1093/jxb/eri179Search in Google Scholar PubMed

[89] Hirai, M.Y., Klein, M., Fujikawa, Y., Yano, M., Goodenowe, D.B., Yamazaki, Y., Kanaya, S., Nakamura, Y., Kitayama, M., Suzuki, H., Sakurai, N., Shibata, D., Tokuhisa, J., Reichelt, M., Gershenzon, J., Papenbrock, J. and Saito K. Elucidation of gene-to-gene and metabolite-to-gene networks in Arabidopsis by integration of metabolomics and transcriptomics. J. Biol. Chem. 280 (2005) 25590–25595. http://dx.doi.org/10.1074/jbc.M50233220010.1074/jbc.M502332200Search in Google Scholar PubMed

[90] Gill, R.T., Katsoulakis, E., Schmitt, W., Taroncher-Oldenburg, G., Misra, J. and Stephanopoulos, G. Genome-wide dynamic transcriptional profiling of the light-to-dark transition in Synechocystis sp. strain PCC 6803. J. Bacteriol. 184 (2002) 3671–3681. http://dx.doi.org/10.1128/JB.184.13.3671-3681.200210.1128/JB.184.13.3671-3681.2002Search in Google Scholar PubMed PubMed Central

[91] Graves, P. and Haystead, T. Molecular biologist’s guide to proteomics. Microbiol. Mol. Biol. Rev. 66 (2002) 39–63. http://dx.doi.org/10.1128/MMBR.66.1.39-63.200210.1128/MMBR.66.1.39-63.2002Search in Google Scholar PubMed PubMed Central

[92] Katagiri, F. Attacking complex problems with the power of systems biology. Plant Physiol. 132 (2003) 417–419. http://dx.doi.org/10.1104/pp.103.02177410.1104/pp.103.021774Search in Google Scholar PubMed PubMed Central

[93] Sweetlove, L.J., Last, R.L. and Fernie, A.R. Predictive metabolic engineering: a goal for systems biology. Plant Physiol. 132 (2003) 420–442. http://dx.doi.org/10.1104/pp.103.02200410.1104/pp.103.022004Search in Google Scholar PubMed PubMed Central

[94] Minorsky, P.V. Achieving the in silico plant. Systems biology and the future of plant biological research. Plant Physiol. 132 (2003) 404–409. http://dx.doi.org/10.1104/pp.90007610.1104/pp.900076Search in Google Scholar

[95] Chong, L. and Ray, L.B. Whole-istic biology. Science 295 (2002) 1661. http://dx.doi.org/10.1126/science.295.5560.166110.1126/science.295.5560.1661Search in Google Scholar

[96] Quackenbush, J. Microarrays — guilt by association. Science 302 (2003) 240–241. http://dx.doi.org/10.1126/science.109088710.1126/science.1090887Search in Google Scholar PubMed

[97] Stuart, J.M., Segal, E., Koller, D. and Kim, S.K. A gene-coexpression network for global discovery of conserved genetic modules. Science 302 (2003) 249–255. http://dx.doi.org/10.1126/science.108744710.1126/science.1087447Search in Google Scholar PubMed

Published Online: 2006-3-1
Published in Print: 2006-3-1

© 2006 University of Wrocław, Poland

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11658-006-0004-8/html
Scroll to top button