Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

Editor-in-Chief: /


IMPACT FACTOR 2016: 1.260
5-year IMPACT FACTOR: 1.506

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.615
Source Normalized Impact per Paper (SNIP) 2016: 0.470

Online
ISSN
1689-1392
See all formats and pricing
More options …
Volume 11, Issue 1 (Mar 2006)

Shape variation of bilayer membrane daughter vesicles induced by anisotropic membrane inclusions

Klemen Bohinc
  • Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000, Ljubljana, Slovenia
  • University College for Health Studies, University of Ljubljana, Poljanska 26a, SI-1000, Ljubljana, Slovenia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Darko Lombardo
  • Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000, Ljubljana, Slovenia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Veronika Kraljiglič
  • Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000, Ljubljana, Slovenia
  • Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Lipičeva 2, 1000, Ljubljana, Slovenia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Miha Fošnarič
  • Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000, Ljubljana, Slovenia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sylvio May / Franjo Pernuš
  • Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000, Ljubljana, Slovenia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Henry Hägerstrand / Aleš Iglič
  • Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000, Ljubljana, Slovenia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2006-03-01 | DOI: https://doi.org/10.2478/s11658-006-0009-3

Abstract

A theoretical model of a two-component bilayer membrane was used in order to describe the influence of anisotropic membrane inclusions on shapes of membrane daughter micro and nano vesicles. It was shown that for weakly anisotropic inclusions the stable vesicle shapes are only slightly out-of-round. In contrast, for strongly anisotropic inclusions the stable vesicle shapes may significantly differ from spheres, i.e. they have a flattened oblate shape at small numbers of inclusions in the membrane, and an elongated cigar-like prolate shape at high numbers of inclusions in the vesicle membrane.

Keywords: Bilayer membranes; Daughter vesicles; Anisotropic membrane inclusions

  • [1] Singer, S.J. and Nicholson, G.L. The fluid mosaic model of the structure of cell membranes. Science 175 (1972) 720–731. Google Scholar

  • [2] Israelachvili, J.N. Intermolecular and surface forces. Academic Press Limited, London, (1997). Google Scholar

  • [3] Fisicaro, E. Gemini surfactants: Chemico-physical and biological properties. Cell. Mol. Biol. Lett. 2 (1997) 45–63. Google Scholar

  • [4] Danino, D., Talmon, Y. and Zana, R. Vesicle-to-micelle transformation in systems containing dimeric surfaces. J. Coll. Inter. Sci. 185 (1997) 84–93. http://dx.doi.org/10.1006/jcis.1996.4545CrossrefGoogle Scholar

  • [5] Helfrich, W. Elastic properties of lipid bilayers: Theory and possible experiments. Z. Naturforsch. 28 (1973) 693–703. Google Scholar

  • [6] Iglič, A. and Kralj-Iglič, V. Planar Lipid Bilayers (BLMs) and Their Applications, in: (Tien, H.T. and Ottova-Leitmannova, A. Eds). Membrane Science and Technology, Vol. 7 Elsevier Science B.V., Amsterdam, New York, chapter 4 (2003) 143–172. Google Scholar

  • [7] Fournier, J.B. Nontopological saddle-splay and curvature instabilities from anisotropic membrane inclusions. Phys. Rev. Lett. 76 (1996) 4436–4439. http://dx.doi.org/10.1103/PhysRevLett.76.4436CrossrefGoogle Scholar

  • [8] Hägerstrand, H. and Isoma, B. Vesiculation induced by amphiphiles in erythrocytes. Biochim. Biophys. Acta 982 (1989) 179–186. http://dx.doi.org/10.1016/0005-2736(89)90053-9CrossrefGoogle Scholar

  • [9] Hägerstrand, H. and Isoma, B. Morphological characterization of exovesicles and endovesicles released from human erythrocytes following treatment with amphiphiles. Biochim. Biophys. Acta 1109 (1992) 117–126. http://dx.doi.org/10.1016/0005-2736(92)90074-VCrossrefGoogle Scholar

  • [10] Staneva, G., Seigneuret, M., Koumanov, K., Trugnan, G. and Angelova, M.I. Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes. Chem. Phys. Lipids 136 (2005) 55–66. http://dx.doi.org/10.1016/j.chemphyslip.2005.03.007CrossrefGoogle Scholar

  • [11] Iglič, A. and Hägerstrand, H. Amphiphile-induced spherical microexovesicle corresponds to an extreme local area difference between two monolayers of the membrane bilayer. Med. Biol. Eng. Comp. 37 (1999) 125–129. Google Scholar

  • [12] Tsafrir, I., Caspi, Y., Guedeau-Boudeville, M.A., Arzi, T. and Stavans, J. Budding and tubulation in highly oblate vesicles by anchored amphiphilic molecules. Phys. Rev. Lett. 91 (2003) 138102-1-4. Google Scholar

  • [13] Sjögren, H., Ericsson, C.A., Evenäs, J. and Ulvenlund, S. Interaction between charged polypeptides and nonionic surfactant. Biophys. J. 89 (2005) 4219–4233. http://dx.doi.org/10.1529/biophysj.105.065342CrossrefGoogle Scholar

  • [14] Kralj-Iglič, V., Heinrich, V., Svetina, S. and Žekš B. Free energy of closed membrane with anisotropic inclusions. Eur. Phys. J. B 10 (1999) 5–8. http://dx.doi.org/10.1007/s100510050822CrossrefGoogle Scholar

  • [15] Kralj-Iglič, V., Iglič, A., Hägerstrand, H. and Peterlin, P. Stable tubular microexovesicles of the erythrocyte membrane induced by dimeric amphiphiles. Phys. Rev. E 61 (2000) 4230–4234. http://dx.doi.org/10.1103/PhysRevE.61.4230CrossrefGoogle Scholar

  • [16] Iglič, A., Fošnarič, M., Hägerstrand, H. and Kralj-Iglič, V. Coupling between vesicle shape and the non-homogeneous lateral distribution of membrane constituents in Golgi bodies. FEBS Lett. 574 (2004) 9–12. http://dx.doi.org/10.1016/j.febslet.2004.07.085CrossrefGoogle Scholar

  • [17] Hägerstrand, H., Kralj-Iglič, V., Fošnarič, M., Bobrowska-Hägerstrand, M., Mrówczyńska, L., Söderström, T. and Iglič, A., Endovesicle formation and membrane perturbation induced by polyoxyethylene-glycolalkylethers in human erythrocytes. Biochim. Biophys. Acta 1665 (2004) 191–200. http://dx.doi.org/10.1016/j.bbamem.2004.08.010CrossrefGoogle Scholar

  • [18] Markin, V.S. Lateral organization of membranes and cell shapes. Biophys. J. 36 (1981) 1–19. http://dx.doi.org/10.1016/S0006-3495(81)84713-3CrossrefGoogle Scholar

  • [19] Huttner, W.B. and Zimmerberg, J. Implications of lipid microdomains for membrane curvature, budding and fission-commentary. Curr. Opin. Cell Biol. 13 (2001) 478–484. http://dx.doi.org/10.1016/S0955-0674(00)00239-8CrossrefGoogle Scholar

  • [20] Kralj-Iglič, V., Iglič, A., Hägerstrand, H. and Bobrowska-Hägerstrand, M. Hypothesis of nanostructures of cell and phospholipid membranes as cell infrastructure. Med. Razgl. 44 (2005) 155–169. Google Scholar

  • [21] Kralj-Iglič, V., Svetina, S. and Žekš, B. Shapes of bilayer vesicles with membrane embedded molecules. Eur. Biophys. J. 24 (1996) 311–321. CrossrefGoogle Scholar

  • [22] Hägerstrand, H., Kralj-Iglič, V., Bobrowska-Hägerstrand, M. and Iglič, A. Membrane skeleton detachment in spherical and cylindrical microexovesicle. Bull. Math. Biol. 61 (1999) 1019–1030. http://dx.doi.org/10.1006/bulm.1999.0128CrossrefGoogle Scholar

  • [23] Seifert, U. Configuration of fluid membranes and vesicles. Adv. Phys. 46 (1997) 13–137. http://dx.doi.org/10.1080/00018739700101488CrossrefGoogle Scholar

  • [24] Helfrich, W. Deformation of lipid bilayer spheres by electric fields. Z. Naturforsch. 29c (1974) 182–183. Google Scholar

About the article

Published Online: 2006-03-01

Published in Print: 2006-03-01


Citation Information: Cellular and Molecular Biology Letters, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-006-0009-3.

Export Citation

© 2006 University of Wrocław, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
N. Ramakrishnan, P.B. Sunil Kumar, and Ravi Radhakrishnan
Physics Reports, 2014, Volume 543, Number 1, Page 1
[2]
Manuela Zoonens, Yana K. Reshetnyak, and Donald M. Engelman
Biophysical Journal, 2008, Volume 95, Number 1, Page 225
[3]
Alexander G. Karabadzhak, Dhammika Weerakkody, Dayanjali Wijesinghe, Mak S. Thakur, Donald M. Engelman, Oleg A. Andreev, Vladislav S. Markin, and Yana K. Reshetnyak
Biophysical Journal, 2012, Volume 102, Number 8, Page 1846
[4]
Y. K. Reshetnyak, O. A. Andreev, M. Segala, V. S. Markin, and D. M. Engelman
Proceedings of the National Academy of Sciences, 2008, Volume 105, Number 40, Page 15340
[5]
Vyas Ramanan, Neeraj J. Agrawal, Jin Liu, Sean Engles, Randall Toy, and Ravi Radhakrishnan
Integrative Biology, 2011, Volume 3, Number 8, Page 803

Comments (0)

Please log in or register to comment.
Log in