Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

More options …
Volume 11, Issue 2


Identification of microsatellite markers in the rye genome

Hanna Bolibok
  • Department of Plant Genetics, Breeding and Biotechnology, Warsaw Agricultural University, Nowoursynowska 166, 02-787, Warszawa, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Monika Rakoczy-Trojanowska
  • Department of Plant Genetics, Breeding and Biotechnology, Warsaw Agricultural University, Nowoursynowska 166, 02-787, Warszawa, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Małgorzata Wyrzykowska
  • Department of Plant Genetics, Breeding and Biotechnology, Warsaw Agricultural University, Nowoursynowska 166, 02-787, Warszawa, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Magdalena Radecka / Wacław Orczyk
Published Online: 2006-06-01 | DOI: https://doi.org/10.2478/s11658-006-0023-5


The rye genomic library, which consists of DNA fragments in the range of 0.5–1.1 kb, was screened for the presence of tri-and tetranucleotide and compound microsatellites. Of the 1,600,000 clones analysed, 102 clones were positive and 41 were suitable for SSR primer pair design. Twenty-six primer pairs amplified specific products, and six of them were capable of detecting polymorphism among 30 rye accessions of different genetic backgrounds. Using a set of Chinese Spring-Imperial wheat-rye addition lines, it was possible to locate 3 newly identified microsatellites on chromosomes 3R, 4R and 7R.

Keywords: Rye; Genomic library; SSR; Microsatellite; Wheat-rye addition lines

  • [1] Litt, M. and Luty, J.A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am. J. Hum. Genet. 44 (1989) 397–401. Google Scholar

  • [2] Tautz, D., Trick, D. and Dover, G. Cryptic simplicity in DNA is a major source of genetic variation. Nature 322 (1986) 652–656. http://dx.doi.org/10.1038/322652a0CrossrefGoogle Scholar

  • [3] Gur-Arie, R., Cohen, C.J., Eitan, Y., Shelef, L., Hallerman, E.M. and Kashi, Y. Simple sequence repeats in Escherichia coli: abundance, distribution, composition, and polymorphism. Genome Res. 10 (2000) 62–71. Google Scholar

  • [4] Rakoczy-Trojanowska, M. and Bolibok, H. Characteristics and a comparison of three classes of microsatellite-based markers and their application in plants. Cell. Mol. Biol. Lett. 9 (2004) 221–238. Google Scholar

  • [5] Saal, B. and Wricke, G. Development of simple sequence repeat markers in rye (Secale cereale L). Genome 42 (1999) 964–972. http://dx.doi.org/10.1139/gen-42-5-964CrossrefGoogle Scholar

  • [6] Korzun, V., Malyshev, S., Voylokov, A.V. and Börner, A. A genetic map of rye (Secale cereale L) combining RFLP, isozyme, protein, microsatellite and gene loci. Theor. Appl. Genet. 102 (2001) 709–717. http://dx.doi.org/10.1007/s001220051701CrossrefGoogle Scholar

  • [7] Hackauf, B. and Wehling, P. Identification of microsatellite polymorphisms in an expressed portion of the rye genome. Plant Breed. 121 (2002) 17–25. http://dx.doi.org/10.1046/j.1439-0523.2002.00649.xCrossrefGoogle Scholar

  • [8] Hackauf, B. and Wehling P. Development of microsatellite markers in rye: map construction. Plant Breed. Seed Sci. 48 (2003) 143–151. Google Scholar

  • [9] Khlestkina, E.K., Than, M.H.M., Pestsova, E.G., Röder, M.S., Malyshev, S.V., Korzun, V. and Börner, A. Mapping of 99 new microsatellite-derived loci in rye (Secale cereale L.) including 39 expressed sequence tags. Theor. Appl. Genet. 19 (2004) 725–732. http://dx.doi.org/10.1007/s00122-004-1659-zCrossrefGoogle Scholar

  • [10] Bolibok, H., Rakoczy-Trojanowska, M., Hromada, A. and Pietrzykowski R. Efficiency of different PCR-based marker systems in assessing genetic diversity among rye inbred lines. Euphytica 146 (2005) 109–115. http://dx.doi.org/10.1007/s10681-005-0548-0CrossrefGoogle Scholar

  • [11] Murray, M.G. and Thompson, W.F. Rapid isolation of high-molecular-weight plant DNA. Nucleic Acids Res. 8 (1980) 4321–4325. CrossrefGoogle Scholar

  • [12] Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 215 (1990) 403–410. http://dx.doi.org/10.1006/jmbi.1990.9999CrossrefGoogle Scholar

  • [13] Varshney, R.K., Thiel, T., Stein, N., Langridge, P. and Graner, A. In silico analysis of frequency and distribution of microsatellites in ESTs of some cereals. Cell. Mol. Biol. Lett. 7 (2002) 537–546. Google Scholar

  • [14] Cho, Y.G., Temnykh, S., Chen, X., Lipovich, L., McCouch, S.R., Ayres, N. and Cartinhour, S. Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L). Theor. Appl. Genet. 100 (2000) 713–722. http://dx.doi.org/10.1007/s001220051343CrossrefGoogle Scholar

  • [15] Schlötterer, C. Evolutionary dynamics of microsatellite DNA. Chromosoma 109 (2000) 365–371. Google Scholar

  • [16] Sharopova, N., McMullen, M.D., Schultz, L., Schroeder, S., Sanchez-Villeda, H., Gardiner, J., Bergstrom, D., Houchins, K., Melia-Hancock, S., Musket, T., Duru, N., Polacco, M., Edwards, K., Ruff, T., Register, J.C., Brouwer, C., Thompson, R., Velasco, R., Chin, E., Lee, M., Woodman-Clikeman, W., Long, M.J., Liscum, E., Cone, K., Davis, G. and Coe Jr., E.H. Development and mapping od SSR markers for maize. Plant Mol. Biol. 48 (2002) 463–481. http://dx.doi.org/10.1023/A:1014868625533CrossrefGoogle Scholar

  • [17] Röder, M.S., Korzun, V., Wendehakem K., Plaschkem, J., Tixier, M.H., Leroy, P. and Ganal, M.W. A microsatellite map of wheat. Genetics 149 (1998) 2007–2023. Google Scholar

  • [18] Pestsova, E., Ganal, M.W. and Röder, M.S. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43 (2000) 689–697. http://dx.doi.org/10.1139/gen-43-4-689CrossrefGoogle Scholar

  • [19] Ma, X.F., Wanous, M.K., Houchins, K., Rodriguez Milla, M.A., Goicoechea, P.G., Wang, Z., Xie, M. and Gustafson, J.P. Molecular linkage mapping in rye (Secale cereale L). Theor. Appl. Genet. 102 (2001) 517–523. http://dx.doi.org/10.1007/s001220051676CrossrefGoogle Scholar

About the article

Published Online: 2006-06-01

Published in Print: 2006-06-01

Citation Information: Cellular and Molecular Biology Letters, Volume 11, Issue 2, Pages 291–298, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-006-0023-5.

Export Citation

© 2006 University of Wrocław, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Jianjian Li, Ruonan Zhou, Takashi R. Endo, Nils Stein, and Thomas Miedaner
Plant Breeding, 2018
Piotr Gawroński, Magdalena Pawełkowicz, Katarzyna Tofil, Grzegorz Uszyński, Saida Sharifova, Shivaksh Ahluwalia, Mirosław Tyrka, Maria Wędzony, Andrzej Kilian, and Hanna Bolibok-Brągoszewska
Frontiers in Plant Science, 2016, Volume 07
Chiara Campoli, Maria A. Matus-Cádiz, Curtis J. Pozniak, Luigi Cattivelli, and D. Brian Fowler
Molecular Genetics and Genomics, 2009, Volume 282, Number 2, Page 141
Hanna Bolibok, Anna Gruszczyńska, Aneta Hromada-Judycka, and Monika Rakoczy-Trojanowska
Cellular and Molecular Biology Letters, 2007, Volume 12, Number 4

Comments (0)

Please log in or register to comment.
Log in