Jump to ContentJump to Main Navigation
Show Summary Details

Cellular and Molecular Biology Letters

Editor-in-Chief: /

IMPACT FACTOR increased in 2015: 1.753

SCImago Journal Rank (SJR) 2015: 0.788
Source Normalized Impact per Paper (SNIP) 2015: 0.645
Impact per Publication (IPP) 2015: 1.748

See all formats and pricing

Select Volume and Issue

Protein profiling of sickle cell versus control RBC core membrane skeletons by ICAT technology and tandem mass spectrometry

1Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas, USA

2Department of Mathematical Sciences, University of Texas at Dallas, Richardson, Texas, USA

3The Institute of Biomedical Sciences and Technology, University of Texas at Dallas, Richardson, Texas, USA

4University of Texas at Dallas, Richardson, Texas, USA

5Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, USA

© 2006 University of Wrocław, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Cellular and Molecular Biology Letters. Volume 11, Issue 3, Pages 326–337, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-006-0026-2, September 2006

Publication History

Published Online:


A proteomic approach using a cleavable ICAT reagent and nano-LC ESI tandem mass spectrometry was used to perform protein profiling of core RBC membrane skeleton proteins between sickle cell patients (SS) and controls (AA), and determine the efficacy of this technology. The data was validated through Peptide/Protein Prophet and protein ratios were calculated through ASAPratio. Through an ANOVA test, it was determined that there is no significant difference in the mean ratios from control populations (AA1/AA2) and sickle cell versus control populations (AA/SS). The mean ratios were not significantly different from 1.0 in either comparison for the core skeleton proteins (α spectrin, β spectrin, band 4.1 and actin). On the natural-log scale, the variation (standard deviation) of the method was determined to be 14.1% and the variation contributed by the samples was 13.8% which together give a total variation of 19.7% in the ratios.

Keywords: Proteomics; Cleavable ICAT; Ion trap mass spectrometry; RBC membrane skeleton; Sickle cell

  • [1] Kakhniashvili, D.G., Bulla, L.A. Jr and Goodman, S.R. The human erythrocyte proteome: analysis by ion trap mass spectrometry. Mol. Cell. Proteomics 3 (2004) 501–509. http://dx.doi.org/10.1074/mcp.M300132-MCP200 [Crossref]

  • [2] Aebersold, R. and Mann, M. Mass spectrometry-based proteomics. Nature 422 (2003) 198–207. http://dx.doi.org/10.1038/nature01511 [Crossref]

  • [3] Shao-En, O., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Hanno Steen, Pandey, A. and Mann M. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1 (2002) 376–386. http://dx.doi.org/10.1074/mcp.M200025-MCP200 [Crossref]

  • [4] Patterson, S.D. and Aebersold, R.H. Proteomics: the first decade and beyond. Nat. Genet. 33 (2003) 311–323. http://dx.doi.org/10.1038/ng1106 [Crossref]

  • [5] Yi, E.C., Li, X.J., Cooke, K., Lee, H., Raught, B., Page, A., Aneliunas, V., Hieter, P., Goodlett, D.R., and Aebersold R. Increased quantitative proteome coverage with (13)C/(12)C-based, acid-cleavable isotope-coded affinity tag reagent and modified data acquisition scheme. Proteomics 5 (2005) 380–387. http://dx.doi.org/10.1002/pmic.200400970 [Crossref]

  • [6] Li, J., Steen, H. and Gygi, S.P. Protein profiling with cleavable isotope-coded affinity tag (cICAT) reagents the yeast salinity stress response. Mol. Cell. Proteomics 2 (2003) 1198–1204. http://dx.doi.org/10.1074/mcp.M300070-MCP200 [Crossref]

  • [7] Molloy, M.P., Donohoe, S., Brzezinski, E.E., Kilby, G.W., Stevenson, T.I., Baker, J.D., Goodlett, R.D. and Gage, D.A. Large-scale evaluation of quantitative reproducibility and proteome coverage using acid cleavable isotope coded affinity tag mass spectrometry for proteomic profiling. Proteomics 5 (2005) 1204–1208. http://dx.doi.org/10.1002/pmic.200400994 [Crossref]

  • [8] Eng, J.K., McCormack, A. L., and Yates, J. R. 3rd. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5 (1994) 976–998. http://dx.doi.org/10.1016/1044-0305(94)80016-2 [Crossref]

  • [9] Keller, A., Nesvihzkii, A., Li, X., Pedroli, P., Eng, J., Hubbley, R., Mallick, P., Zhang, N., Shannon, P., Deutsch, E., Watts, J. and Aebersold R. Computational tools for high throughput proteomics. ISB Symposium, 2003.

  • [10] Keller, A., Nesvizhskii, A.I., Kolker E. and Aebersold R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74 (2002) 5383–5392. http://dx.doi.org/10.1021/ac025747h [Crossref]

  • [11] Li, X.J., Zhang, H., Ranish, J.A. and Aebersold R. Automated statistical analysis of protein abundance ratios from data generated by stable-isotope dilution and tandem mass spectrometry. Anal. Chem. 75 (2003) 6648–6657. http://dx.doi.org/10.1021/ac034633i [Crossref]

  • [12] Nesvizhskii A.I., Keller A., Kolker E. and Aebersold R. A Statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 75 (2003) 4646–4658. http://dx.doi.org/10.1021/ac0341261 [Crossref]

  • [13] Searle, S.R., Casella, G. and McCulloch Variance Components, John Wiley, New York, 1992, 168–231.

  • [14] Pinheiro, J.C. and Bates, D. M. Mixed-Effects Models in S and S-PLUS, Springer Verlag, New York, 2000, 57–96.

  • [15] Lehman, E.L. Elements of Large Sample Theory, Springer Verlag, New York, 1998, 277–362.

  • [16] Gygi, S.P., Rist, B., Gerber, S.A., Turecek, F., Gelb, M. and Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17 (1999) 994–999. http://dx.doi.org/10.1038/13690 [Crossref]

  • [17] Zhang, R., Sioma, C.S., Wang, S. and Regnier, F.E. Fractionation of isotopically labeled peptides in quantitative proteomics. Anal. Chem. 73 (2001) 5142–5149. http://dx.doi.org/10.1021/ac010583a [Crossref]

  • [18] Oda, Y., Owa, T., Sato, T. and Boucher, B. Quantitative chemical proteomics for identifying candidate drug targets. Anal. Chem. 75 (2003) 2159–2165. http://dx.doi.org/10.1021/ac026196y [Crossref]

  • [19] Hansen, K.C., Schmitt-Ulms, G., Chalkley, R. J., Hirsch, J., Baldwin, M.A. and Burlingame, A.L. Mass spectrometric analysis of protein mixtures at low levels using cleavable 13C-isotope-coded affinity tag and multidimensional chromatography. Mol. Cell Proteomics 2 (2003) 299–314.

  • [20] Gygi, S.P., Corthals, G.L., Zhang, Y., Rochon, Y. and Aebersold, R. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc. Natl. Acad. Sci. USA 97 (2000) 9390–9395. http://dx.doi.org/10.1073/pnas.160270797 [Crossref]

  • [21] Wilkins, M.R., Gasteiger, E., Sanchez, J.C., Bairoch, A. and Hochstrasser, D.F. Electrophoresis 19 (1998) 1501–1505. http://dx.doi.org/10.1002/elps.1150190847 [Crossref]

  • [22] Santoni, V., Molloy, M. and Rabilloud, T. Membrane proteins and proteomics: Un amour impossible? Electrophoresis 21 (2000) 1054–1070. http://dx.doi.org/10.1002/(SICI)1522-2683(20000401)21:6<1054::AID-ELPS1054>3.0.CO;2-8 [Crossref]

  • [23] Molloy, M.P., Phadke, N.D., Chen, H., Tyldesley, R. Garfin D.E., Maddock, J.R. and Andrews P.C. Profiling the alkaline membrane proteome of Caulobacter crescentus with two-dimensional electrophoresis and mass spectrometry. Proteomics 2 (2002) 899–910. http://dx.doi.org/10.1002/1615-9861(200207)2:7<899::AID-PROT899>3.0.CO;2-Y [Crossref]

  • [24] Kakhniashvili, D.G., Griko, N.B., Bulla, L.A. Jr and Goodman, S.R. The proteomics of sickle cell disease: profiling of erythrocyte membrane proteins by 2D-DIGE and tandem mass spectrometry. Exp. Biol. Med. 230 (2005) 787–792.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Avik Basu, Sutapa Saha, Shilpita Karmakar, Sudipa Chakravarty, Debasis Banerjee, Bisnu Prasad Dash, and Abhijit Chakrabarti
PROTEOMICS, 2013, Volume 13, Number 21, Page 3233
Giancarlo Liumbruno, Angelo D'Alessandro, Giuliano Grazzini, and Lello Zolla
Journal of Proteomics, 2010, Volume 73, Number 3, Page 483
Abhijit Chakrabarti, Dipankar Bhattacharya, Avik Basu, Sumanta Basu, Sutapa Saha, and Suchismita Halder
PROTEOMICS - Clinical Applications, 2011, Volume 5, Number 1-2, Page 98
M. Zivanic, O. Daescu, A. Kurdia, and S.R. Goodman
Journal of Computational Science, 2012, Volume 3, Number 5, Page 335
Giancarlo Liumbruno, Angelo D’Alessandro, Giuliano Grazzini, and Lello Zolla
Critical Reviews in Oncology/Hematology, 2010, Volume 76, Number 3, Page 153
Xu-Wei Cai, Kerby Shedden, Xiaoping Ao, Mary Davis, Xiao-Long Fu, Theodore S. Lawrence, David M. Lubman, and Feng-Ming (Spring) Kong
International Journal of Radiation Oncology*Biology*Physics, 2010, Volume 77, Number 3, Page 867
Angela Siciliano, Franco Turrini, Mariarita Bertoldi, Alessandro Matte, Antonella Pantaleo, Oliviero Olivieri, and Lucia De Franceschi
Blood Cells, Molecules, and Diseases, 2010, Volume 44, Number 4, Page 233
Wei Wang, Lantu Gou, and Jinliang Yang
Expert Review of Proteomics, 2010, Volume 7, Number 6, Page 799
Angelo D’Alessandro and Lello Zolla
Analytical and Bioanalytical Chemistry, 2010, Volume 398, Number 1, Page 111
Andrea Biondani, Franco Turrini, Franco Carta, Alessandro Matté, Alida Filippini, Angela Siciliano, Yves Beuzard, and Lucia De Franceschi
PROTEOMICS – CLINICAL APPLICATIONS, 2008, Volume 2, Number 5, Page 706

Comments (0)

Please log in or register to comment.