Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

Online
ISSN
1689-1392
See all formats and pricing
More options …
Volume 11, Issue 4

Issues

Endoplasmic reticulum stress and apoptosis

Jitka Faitova
  • Department of Pathology and Experimental Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53, Brno, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Daniel Krekac
  • Department of Pathology and Experimental Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53, Brno, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Roman Hrstka
  • Department of Pathology and Experimental Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53, Brno, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Borivoj Vojtesek
  • Department of Pathology and Experimental Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53, Brno, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2006-09-05 | DOI: https://doi.org/10.2478/s11658-006-0040-4

Abstract

Cell death is an essential event in normal life and development, as well as in the pathophysiological processes that lead to disease. It has become clear that each of the main cellular organelles can participate in cell death signalling pathways, and recent advances have highlighted the importance of the endoplasmic reticulum (ER) in cell death processes. In cells, the ER functions as the organelle where proteins mature, and as such, is very responsive to extracellular-intracellular changes of environment. This short overview focuses on the known pathways of programmed cell death triggering from or involving the ER.

Keywords: Endoplasmic reticulum; Apoptosis; p53; Scotin

  • [1] Kaufman, R.J. Stress signalling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 13 (1999) 1211–1233. Google Scholar

  • [2] Pahl, H.L. Signal transduction from the endoplasmic reticulum to the cell nucleus. Physiol. Rev. 79 (1999) 683–701. Google Scholar

  • [3] Ma, Y. and Hendershot, L.M. The role of the unfolded protein response in tumour development: friend or foe? Nat. Rev. Cancer 4 (2004) 966–977. http://dx.doi.org/10.1038/nrc1505CrossrefGoogle Scholar

  • [4] Lemasters, J.J. Dying a thousand deaths: redundant pathways from different organelles to apoptosis and necrosis. Gastroenterology 129 (2005) 351–360. http://dx.doi.org/10.1053/j.gastro.2005.06.006CrossrefGoogle Scholar

  • [5] Breckenridge, D.G., Germain, M., Mathai, J.P., Nguyen, M. and Shore, G.C. Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 22 (2003) 8608–8618. http://dx.doi.org/10.1038/sj.onc.1207108CrossrefGoogle Scholar

  • [6] Scheuner, D., Song, B., McEwen, E., Liu, C., Laybutt, R., Gillespie, P., Saunders, T., Bonner-Weir, S. and Kaufman, R.J. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol. Cell. 7 (2001) 1165–1176. http://dx.doi.org/10.1016/S1097-2765(01)00265-9CrossrefGoogle Scholar

  • [7] Iwakoshi, N.N., Lee, A.H., Vallabhajosyula, P., Otipoby, K.L., Rajewsky, K. and Glimcher, L.H. Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat. Immunol. 4 (2003) 321–329. http://dx.doi.org/10.1038/ni907CrossrefGoogle Scholar

  • [8] Gass, J.N., Gifford, N.M. and Brewer, J.W. Activation of an unfolded protein response during differentiation of antibody-secreting B cells. J. Biol. Chem. 277 (2002) 49047–49054. http://dx.doi.org/10.1074/jbc.M205011200CrossrefGoogle Scholar

  • [9] Reimold, A.M., Etkin, A., Clauss, I., Perkins, A., Friend, D.S., Zhang, J., Horton, H.F., Scott, A., Orkin, S.H., Byrne, M.C., Grusby, M.J. and Glimcher, L.H. An essential role in liver development for transcription factor XBP-1. Genes Dev. 14 (2000) 152–157. Google Scholar

  • [10] Freiden, P.J., Gaut, J.R. and Hendershot, L.M. Interconversion of three differentially modified and assembled forms of BiP. EMBO J. 11 (1992) 63–70. Google Scholar

  • [11] Blond-Elguindi, S., Fourie, A.M., Sambrook, J.F. and Gething, M.J. Peptide-dependent stimulation of the ATPase activity of the molecular chaperone BiP is the result of conversion of oligomers to active monomers. J. Biol. Chem. 268 (1993) 12730–12735. Google Scholar

  • [12] Tirasophon, W., Welihinda, A.A. and Kaufman, R.J. A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev. 12 (1998) 1812–1824. Google Scholar

  • [13] Wang, X.Z., Harding, H.P., Zhang, Y., Jolicoeur, E.M., Kuroda, M. and Ron, D. Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J. 17 (1998a) 5708–5717. http://dx.doi.org/10.1093/emboj/17.19.5708CrossrefGoogle Scholar

  • [14] Ma, Y. and Hendershot, L.M. The unfolding tale of the unfolded protein response. Cell 107 (2001) 827–830 Google Scholar

  • [15] Shen, X., Ellis, R.E., Lee, K., Liu, C.Y., Yang, K., Solomon, A., Yoshida, H., Morimoto, R., Kurnit, D.M., Mori, K. and Kaufman, R.J. Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell 107 (2001) 893–903. http://dx.doi.org/10.1016/S0092-8674(01)00612-2CrossrefGoogle Scholar

  • [16] Lee, K., Tirasophon, W., Shen, X., Michalak, M., Prywes, R., Okada, T., Yoshida, H., Mori, K. and Kaufman, R.J. IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev. 16 (2002) 452–466. http://dx.doi.org/10.1101/gad.964702Google Scholar

  • [17] Harding, H.P., Zhang, Y. and Ron, D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397 (1999) 271–274. http://dx.doi.org/10.1038/16729CrossrefGoogle Scholar

  • [18] Shi, Y., Vattem, K.M., Sood, R., An, J., Liang, J., Stramm, L. and Wek, R.C. Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol. Cell. Biol. 18 (1998) 7499–74509. PubMedGoogle Scholar

  • [19] Jiang, H.Y. and Wek, R.C. Phosphorylation of the alpha-subunit of the eukaryotic initiation factor-2 (eIF2alpha) reduces protein synthesis and enhances apoptosis in response to proteasome inhibition. J. Biol. Chem. 280 (2005) 14189–14202. http://dx.doi.org/10.1074/jbc.M413660200CrossrefGoogle Scholar

  • [20] Ye, J., Rawson, R.B., Komuro, R., Chen, X., Dave, U.P., Prywes, R., Brown, M.S. and Goldstein, J.L. ER stress induces cleavage of membranebound ATF6 by the same proteases that process SREBPs. Mol. Cell. 6 (2000) 1355–1364. http://dx.doi.org/10.1016/S1097-2765(00)00133-7Google Scholar

  • [21] Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. and Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107 (2001) 881–891. http://dx.doi.org/10.1016/S0092-8674(01)00611-0CrossrefGoogle Scholar

  • [22] Calfon, M., Zeng, H., Urano, F., Till, J.H., Hubbard, S.R., Harding, H.P., Clark, S.G. and Ron, D. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415 (2002) 92–96. http://dx.doi.org/10.1038/415092aCrossrefGoogle Scholar

  • [23] Fornace, A.J. Jr., Alamo, I. Jr. and Hollander, M.C. DNA damage-inducible transcripts in mammalian cells. Proc. Natl. Acad. Sci. USA 85 (1988) 8800–8804. http://dx.doi.org/10.1073/pnas.85.23.8800CrossrefGoogle Scholar

  • [24] Ron, D. and Habener, J.F. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev. 6 (1992) 439–453. Google Scholar

  • [25] Barone, M.V., Crozat, A., Tabaee, A., Philipson, L. and Ron, D. CHOP (GADD153) and its oncogenic variant, TLS-CHOP, have opposing effects on the induction of G1/S arrest. Genes Dev. 8 (1994) 453–464. Google Scholar

  • [26] Zhan, Q., Lord, K.A., Alamo, I. Jr., Hollander, M.C., Carrier, F., Ron, D., Kohn, K.W., Hoffman, B., Liebermann, D.A. and Fornace, A.J. Jr. The gadd and MyD genes define a novel set of mammalian genes encoding acidic proteins that synergistically suppress cell growth. Mol. Cell. Biol. 14 (1994) 2361–2371. CrossrefGoogle Scholar

  • [27] Harding, H.P., Novoa, I., Zhang, Y., Zeng, H., Wek, R., Schapira, M. and Ron, D. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell. 6 (2000) 1099–108. http://dx.doi.org/10.1016/S1097-2765(00)00108-8CrossrefGoogle Scholar

  • [28] Okada, T., Yoshida, H., Akazawa, R., Negishi, M. and Mori, K. Distinct roles of activating transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response. Biochem. J. 366 (2002) 585–594. http://dx.doi.org/10.1042/BJ20020391CrossrefGoogle Scholar

  • [29] Wang, X.Z. and Ron, D. Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP Kinase. Science 272 (1996) 1347–1349. http://dx.doi.org/10.1126/science.272.5266.1347CrossrefGoogle Scholar

  • [30] Oyadomari, S. and Mori, M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ. 11 (2004) 381–389. http://dx.doi.org/10.1038/sj.cdd.4401373CrossrefGoogle Scholar

  • [31] Wang, X.Z., Lawson, B., Brewer, J.W., Zinszner, H., Sanjay, A., Mi, L.J., Boorstein, R., Kreibich, G., Hendershot, L.M. and Ron, D. Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153). Mol. Cell. Biol. 16 (1996) 4273–4280. Google Scholar

  • [32] Prostko, C.R., Brostrom, M.A., Malara, E.M. and Brostrom, C.O. Phosphorylation of eukaryotic initiation factor (eIF) 2 alpha and inhibition of eIF-2B in GH3 pituitary cells by perturbants of early protein processing that induce GRP78. J. Biol. Chem. 267 (1992) 16751–16754. Google Scholar

  • [33] Samuel, C.E., Kuhen, K.L., George, C.X., Ortega, L.G., Rende-Fournier, R. and Tanaka, H. The PKR protein kinase—an interferon-inducible regulator of cell growth and differentiation. Int. J. Hematol. 65 (1997) 227–237. http://dx.doi.org/10.1016/S0925-5710(96)00544-0CrossrefGoogle Scholar

  • [34] St Johnston, D., Brown, N.H., Gall, J.G. and Jantsch, M. A conserved double-stranded RNA-binding domain. Proc. Natl. Acad. Sci. USA 89 (1992) 10979–10983. http://dx.doi.org/10.1073/pnas.89.22.10979CrossrefGoogle Scholar

  • [35] Zinn, K., Keller, A., Whittemore, L.A. and Maniatis, T. 2-Aminopurine selectively inhibits the induction of beta-interferon, c-fos, and c-myc gene expression. Science 240 (1988) 210–213. http://dx.doi.org/10.1126/science.3281258CrossrefGoogle Scholar

  • [36] Kumar, A., Haque, J., Lacoste, J., Hiscott, J. and Williams, B.R. Doublestranded RNA-dependent protein kinase activates transcription factor NFkappa B by phosphorylating I kappa B. Proc. Natl. Acad. Sci. USA 91 (1994) 6288–6292. http://dx.doi.org/10.1073/pnas.91.14.6288CrossrefGoogle Scholar

  • [37] Jimenez-Garcia, L.F., Green, S.R., Mathews, M.B. and Spector, D.L. Organization of the double-stranded RNA-activated protein kinase DAI and virus-associated VA RNAI in adenovirus-2-infected HeLa cells. J. Cell Sci. 106 (1993) 11–22. Google Scholar

  • [38] Jeffrey, I.W., Kadereit, S., Meurs, E.F., Metzger, T., Bachmann, M., Schwemmle, M., Hovanessian, A.G. and Clemens, M.J. Nuclear localization of the interferon-inducible protein kinase PKR in human cells and transfected mouse cells. Exp. Cell Res. 218 (1995) 17–27. http://dx.doi.org/10.1006/excr.1995.1126CrossrefGoogle Scholar

  • [39] Wu, S., Kumar, K.U. and Kaufman, R.J. Identification and requirement of three ribosome binding domains in dsRNA-dependent protein kinase (PKR). Biochemistry 37 (1998) 13816–13826. http://dx.doi.org/10.1021/bi981472hCrossrefGoogle Scholar

  • [40] Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B.A. and Yuan, J. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403 (2000) 98–103. http://dx.doi.org/10.1038/47513CrossrefGoogle Scholar

  • [41] Fischer, H., Koenig, U., Eckhart, L. and Tschachler, E. Human caspase 12 has acquired deleterious mutations. Biochem. Biophys. Res. Commun. 293 (2002) 722–726. http://dx.doi.org/10.1016/S0006-291X(02)00289-9Google Scholar

  • [42] Hitomi, J., Katayama, T., Eguchi, Y., Kudo, T., Taniguchi, M., Koyama, Y., Manabe, T., Yamagishi, S., Bando, Y., Imaizumi, K., Tsujimoto, Y. and Tohyama, M. Involvement of caspase-4 in endoplasmic reticulum stressinduced apoptosis and Abeta-induced cell death. J. Cell Biol. 165 (2004) 347–356. http://dx.doi.org/10.1083/jcb.200310015Google Scholar

  • [43] Urano, F., Wang, X., Bertolotti, A., Zhang, Y., Chung, P., Harding, H.P. and Ron, D. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287 (2000) 664–666. http://dx.doi.org/10.1126/science.287.5453.664CrossrefGoogle Scholar

  • [44] Yoneda, T., Imaizumi, K., Oono, K., Yui, D., Gomi, F., Katayama, T. and Tohyama, M. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J. Biol. Chem. 276 (2001) 3935–3940. Google Scholar

  • [45] Rao, R.V., Castro-Obregon, S., Frankowski, H., Schuler, M., Stoka, V., del Rio, G., Bredesen, D.E. and Ellerby, H.M. Coupling endoplasmic reticulum stress to the cell death program. An Apaf-1-independent intrinsic pathway. J. Biol. Chem. 277 (2002) 21836–21842. http://dx.doi.org/10.1074/jbc.M202726200CrossrefGoogle Scholar

  • [46] Morishima, N., Nakanishi, K., Takenouchi, H., Shibata, T. and Yasuhiko, Y. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J. Biol. Chem. 277 (2002) 34287–34294. http://dx.doi.org/10.1074/jbc.M204973200Google Scholar

  • [47] Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B.A. and Yuan J. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403 (2000) 98–103. http://dx.doi.org/10.1038/47513CrossrefGoogle Scholar

  • [48] Di Sano, F., Ferraro, E., Tufi, R., Achsel, T., Piacentini, M. and Cecconi, F. Endoplasmic reticulum stress induces apoptosis by an apoptosomedependent but caspase 12-independent mechanism. J. Biol. Chem. 281 (2006) 2693–2700. http://dx.doi.org/10.1074/jbc.M509110200Google Scholar

  • [49] Saleh, M., Mathison, J.C., Wolinski, M.K., Bensinger, S.J., Fitzgerald, P., Droin, N., Ulevitch, R.J., Green, D.R. and Nicholson, D.W. Enhanced bacterial clearance and sepsis resistance in caspase-12-deficient mice. Nature 440 (2006) 1064–1068. http://dx.doi.org/10.1038/nature04656CrossrefGoogle Scholar

  • [50] Saleh, M., Vaillancourt, J.P., Graham, R.K., Huyck, M., Srinivasula, S.M., Alnemri, E.S., Steinberg, M.H., Nolan, V., Baldwin, C.T., Hotchkiss, R.S., Buchman, T.G., Zehnbauer, B.A., Hayden, M.R., Farrer, L.A., Roy, S. and Nicholson, D.W. Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature 6 (2004) 75–79. http://dx.doi.org/10.1038/nature02451CrossrefGoogle Scholar

  • [51] Pahl, H.L. and Baeuerle, P.A. A novel signal transduction pathway from the endoplasmic reticulum to the nucleus is mediated by transcription factor NFkappa B. EMBO J. 14 (1995) 2580–2588. Google Scholar

  • [52] Pahl, H.L., Sester, M., Burgert, H.G. and Baeuerle, P.A. Activation of transcription factor NF-kappaB by the adenovirus E3/19K protein requires its ER retention. J. Cell Biol. 132 (1996) 511–522. http://dx.doi.org/10.1083/jcb.132.4.511CrossrefGoogle Scholar

  • [53] Hacki, J., Egger, L., Monney, L., Conus, S., Rosse, T., Fellay, I. and Borner, C. Apoptotic crosstalk between the endoplasmic reticulum and mitochondria controlled by Bcl-2. Oncogene 19 (2000) 2286–2295. http://dx.doi.org/10.1038/sj.onc.1203592CrossrefGoogle Scholar

  • [54] Boya, P., Cohen, I., Zamzami, N., Vieira, H.L. and Kroemer, G. Endoplasmic reticulum stress-induced cell death requires mitochondrial membrane permeabilization. Cell Death Differ. 9 (2002) 465–467. http://dx.doi.org/10.1038/sj.cdd.4401006CrossrefGoogle Scholar

  • [55] McCormick, T.S., McColl, K.S. and Distelhorst, C.W. Mouse lymphoma cells destined to undergo apoptosis in response to thapsigargin treatment fail to generate a calcium-mediated grp78/grp94 stress response. J. Biol. Chem. 272 (1997) 6087–6092. http://dx.doi.org/10.1074/jbc.272.38.23616CrossrefGoogle Scholar

  • [56] McCullough, K.D., Martindale, J.L., Klotz, L.O., Aw, T.Y. and Holbrook, N.J. Gadd153 sensitizes cells to endoplasmic reticulum stress by downregulating Bcl2 and perturbing the cellular redox state. Mol. Cell. Biol. 21 (2001) 1249–1259. http://dx.doi.org/10.1128/MCB.21.4.1249-1259.2001CrossrefGoogle Scholar

  • [57] Wei, M.C., Zong, W.X., Cheng, E.H., Lindsten, T., Panoutsakopoulou, V., Ross, A.J., Roth, K.A., MacGregor, G.R., Thompson, C.B. and Korsmeyer, S.J. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292 (2001) 727–730. http://dx.doi.org/10.1126/science.1059108CrossrefGoogle Scholar

  • [58] Rizzuto, R., Pinton, P., Carrington, W., Fay, F.S., Fogarty, K.E., Lifshitz, L.M., Tuft, R.A. and Pozzan, T. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280 (1998) 1763–1766. http://dx.doi.org/10.1126/science.280.5370.1763CrossrefGoogle Scholar

  • [59] Hsu, Y.T., Wolter, K.G. and Youle, R.J. Cytosol-to-membrane redistribution of Bax and Bcl-X(L) during apoptosis. Proc. Natl. Acad. Sci. USA 94 (1997) 3668–3672. http://dx.doi.org/10.1073/pnas.94.8.3668CrossrefGoogle Scholar

  • [60] Lindsten, T., Ross A.J., King, A., Zong, W.X., Rathmell, J.C., Shiels, H.A., Ulrich, E., Waymire, K.G., Mahar, P., Frauwirth, K., Chen, Y., Wei, M., Eng, V.M., Adelman, D.M., Simon, M.C., Ma, A., Golden, J.A., Evan, G., Korsmeyer, S.J., MacGregor, G.R. and Thompson, C.B. The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol. Cell. 6 (2000) 1389–1399. http://dx.doi.org/10.1016/S1097-2765(00)00136-2CrossrefGoogle Scholar

  • [61] Zong, W.X., Lindsten, T., Ross, A.J., MacGregor, G.R. and Thompson, C.B. BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev. 15 (2001) 1481–1486. http://dx.doi.org/10.1101/gad.897601CrossrefGoogle Scholar

  • [62] Pinton, P., Ferrari, D., Magalhaes, P., Schulze-Osthoff, K., Di Virgilio, F., Pozzan, T. and Rizzuto, R. Reduced loading of intracellular Ca2+ stores and downregulation of capacitative Ca2+ influx in Bcl-2-overexpressing cells. J. Cell Biol. 148 (2000) 857–862. http://dx.doi.org/10.1083/jcb.148.5.857CrossrefGoogle Scholar

  • [63] Foyouzi-Youssefi, R., Arnaudeau, S., Borner, C., Kelley, W.L., Tschopp, J., Lew, D.P., Demaurex, N. and Krause, K.H. Bcl-2 decreases the free Ca2+ concentration within the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 97 (2000) 5723–5728. http://dx.doi.org/10.1073/pnas.97.11.5723CrossrefGoogle Scholar

  • [64] Chami, M., Prandini, A., Campanella, M., Pinton, P., Szabadkai, G., Reed, J.C. and Rizzuto, R. Bcl-2 and Bax exert opposing effects on Ca2+ signaling, which do not depend on their putative pore-forming region. J. Biol. Chem. 279 (2004) 54581–54589. http://dx.doi.org/10.1074/jbc.M409663200CrossrefGoogle Scholar

  • [65] Li, H., Zhu, H., Xu, C.J. and Yuan, J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94 (1998) 491–501. http://dx.doi.org/10.1016/S0092-8674(00)81590-1CrossrefGoogle Scholar

  • [66] Luo, X., Budihardjo, I., Zou, H., Slaughter, C. and Wang, X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94 (1998) 481–490. http://dx.doi.org/10.1016/S0092-8674(00)81589-5CrossrefGoogle Scholar

  • [67] Puthalakath, H. and Strasser, A. Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ. 9 (2002) 505–512. http://dx.doi.org/10.1038/sj.cdd.4400998CrossrefGoogle Scholar

  • [68] Letai, A., Bassik, M.C., Walensky, L.D., Sorcinelli, M.D., Weiler, S. and Korsmeyer, S.J. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell. 2 (2002) 183–192. http://dx.doi.org/10.1016/S1535-6108(02)00127-7CrossrefGoogle Scholar

  • [69] Germain, M., Mathai, J.P. and Shore, G.C. BH-3-only BIK functions at the endoplasmic reticulum to stimulate cytochrome c release from mitochondria. J. Biol. Chem. 277 (2002) 18053–18060. http://dx.doi.org/10.1074/jbc.M201235200CrossrefGoogle Scholar

  • [70] Ito, Y., Pandey, P., Mishra, N., Kumar, S., Narula, N., Kharbanda, S., Saxena, S. and Kufe, D. Targeting of the c-Abl tyrosine kinase to mitochondria in endoplasmic reticulum stress-induced apoptosis. Mol. Cell. Biol. 21 (2001) 6233–6242. http://dx.doi.org/10.1128/MCB.21.18.6233-6242.2001CrossrefGoogle Scholar

  • [71] Ng, F.W., Nguyen, M., Kwan, T., Branton, P.E., Nicholson, D.W., Cromlish, J.A. and Shore, G.C. p28 Bap31, a Bcl-2/Bcl-XL-and procaspase-8-associated protein in the endoplasmic reticulum. J. Cell. Biol. 139 (1997) 327–338. http://dx.doi.org/10.1083/jcb.139.2.327CrossrefGoogle Scholar

  • [72] Breckenridge, D.G., Nguyen, M., Kuppig, S., Reth, M. and Shore, G.C. The procaspase-8 isoform, procaspase-8L, recruited to the BAP31 complex at the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 99 (2002) 4331–4336. http://dx.doi.org/10.1073/pnas.072088099CrossrefGoogle Scholar

  • [73] Nguyen, M., Breckenridge, D.G., Ducret, A. and Shore, G.C. Caspaseresistant BAP31 inhibits fas-mediated apoptotic membrane fragmentation and release of cytochrome c from mitochondria. Mol. Cell. Biol. 20 (2000) 6731–6740. http://dx.doi.org/10.1128/MCB.20.18.6731-6740.2000CrossrefGoogle Scholar

  • [74] Wang, X., Zelenski, N.G., Yang, J., Sakai, J., Brown, M.S. and Goldstein J.L. Cleavage of sterol regulatory element binding proteins (SREBPs) by CPP32 during apoptosis. EMBO J. 15 (1996) 1012–1020. Google Scholar

  • [75] Keenan, R.J., Freymann, D.M., Stroud, R.M. and Walter, P. The signal recognition particle. Annu. Rev. Biochem. 70 (2001) 755–775. http://dx.doi.org/10.1146/annurev.biochem.70.1.755CrossrefGoogle Scholar

  • [76] Utz, P.J., Hottelet, M., Le, T.M., Kim, S.J., Geiger, M.E., van Venrooij, W.J. and Anderson P. The 72-kDa component of signal recognition particle is cleaved during apoptosis. J. Biol. Chem. 273 (1998) 35362–35370. http://dx.doi.org/10.1074/jbc.273.52.35362CrossrefGoogle Scholar

  • [77] Hirota, J., Furuichi, T. and Mikoshiba, K. Inositol 1,4,5-trisphosphate receptor type 1 is a substrate for caspase-3 and is cleaved during apoptosis in a caspase-3-dependent manner. J. Biol. Chem. 274 (1999) 34433–34437. http://dx.doi.org/10.1074/jbc.274.48.34433Google Scholar

  • [78] Reddy, R.K., Lu, J. and Lee, A.S. The endoplasmic reticulum chaperone glycoprotein GRP94 with Ca (2+)-binding and antiapoptotic properties is a novel proteolytic target of calpain during etoposide-induced apoptosis. J. Biol. Chem. 274 (1999) 28476–28483. http://dx.doi.org/10.1074/jbc.274.40.28476CrossrefGoogle Scholar

  • [79] Wellington, C.L. and Hayden, M.R. Caspases and neurodegeneration: on the cutting edge of new therapeutic approaches. Clin. Genet. 57 (2000) 1–10. http://dx.doi.org/10.1034/j.1399-0004.2000.570101.xCrossrefGoogle Scholar

  • [80] Qu, L., Huang, S., Baltzis, D., Rivas-Estilla, A.M., Pluquet, O., Hatzoglou, M., Koumenis, C., Taya, Y., Yoshimura, A. and Koromilas, A.E. Endoplasmic reticulum stress induces p53 cytoplasmic localization and prevents p53-dependent apoptosis by a pathway involving glycogen synthase kinase-3 beta. Genes Dev. 18 (2004) 261–277. http://dx.doi.org/10.1101/gad.1165804CrossrefGoogle Scholar

  • [81] Waterman, M.J., Stavridi, E.S., Waterman, J.L. and Halazonetis, T.D. ATMdependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins. Nat Genet. 19 (1998) 175–178. http://dx.doi.org/10.1038/542CrossrefGoogle Scholar

  • [82] Stavridi, E.S., Chehab, N.H., Malikzay, A. and Halazonetis, T.D. Substitutions that compromise the ionizing radiation-induced association of p53 with 14-3-3 proteins also compromise the ability of p53 to induce cell cycle arrest. Cancer Res. 61 (2001) 7030–7033. Google Scholar

  • [83] Bourdon, J.C., Deguin-Chambon, V., Lelong, J.C., Dessen, P., May, P., Debuire, B. and May, E. Further characterisation of the p53 responsive element identification of new candidate genes for trans-activation by p53. Oncogene 14 (1997) 85–94. http://dx.doi.org/10.1038/sj.onc.1200804CrossrefGoogle Scholar

About the article

Published Online: 2006-09-05

Published in Print: 2006-12-01


Citation Information: Cellular and Molecular Biology Letters, Volume 11, Issue 4, Pages 488–505, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-006-0040-4.

Export Citation

© 2006 University of Wrocław, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Tian-Lu Shi, Lei Zhang, Ji-shuang Yu, Qi-rao Cheng, Jun Liu, Yu-jun Shen, Xiao-jun Feng, and Yu-xian Shen
European Journal of Pharmacology, 2018
[2]
Fernando Bessone, Melisa Dirchwolf, María Agustina Rodil, María Valeria Razori, and Marcelo G. Roma
Alimentary Pharmacology & Therapeutics, 2018
[3]
Xiu-Mei Li, Jing Liu, Fang-Fang Pan, Dong-Dong Shi, Zhi-Guo Wen, Pei-Long Yang, and Ying-Jan Wang
PLOS ONE, 2018, Volume 13, Number 1, Page e0191062
[4]
Pingping Liang, Lin Zhong, Lei Gong, Jiahui Wang, Yujie Zhu, Weifeng Liu, and Jun Yang
International Journal of Molecular Medicine, 2017, Volume 40, Number 5, Page 1477
[5]
Seung-Eun Song, Su-Kyung Shin, Hyun-Woo Cho, Seung-Soon Im, Jae-Hoon Bae, Seon Min Woo, Taeg-Kyu Kwon, and Dae-Kyu Song
Molecular and Cellular Biochemistry, 2017
[6]
Yixiao Xu, Wantie Wang, Keke Jin, Qifan Zhu, Hongzhou Lin, Minye Xie, and Dexuan Wang
Biomedicine & Pharmacotherapy, 2017, Volume 95, Page 662
[7]
Madduma Hewage Susara Ruwan Kumara, Mei Jing Piao, Kyoung Ah Kang, Yea Seong Ryu, Jeong Eon Park, Kristina Shilnikova, Jin Oh Jo, Young Sun Mok, Jennifer H. Shin, Yeonsoo Park, Seong Bong Kim, Suk Jae Yoo, and Jin Won Hyun
Oncology Reports, 2016, Volume 36, Number 4, Page 2268
[8]
Xiaohui Xu, Yushang Cui, Lei Cao, Ye Zhang, Yan Yin, and Xue Hu
Experimental and Therapeutic Medicine, 2017, Volume 13, Number 5, Page 1993
[9]
CHUN-LEI LIU, YUN-YUN HE, XIN LI, RUI-JUN LI, KUN-LUN HE, and LI-LI WANG
International Journal of Molecular Medicine, 2014, Volume 33, Number 3, Page 499
[10]
Brooke M. Baker and Domenico Tortorella
Journal of Biological Chemistry, 2007, Volume 282, Number 37, Page 26845
[11]
Chen Feng, Yiqun Xia, Peng Zou, Miaoshan Shen, Jie Hu, Shilong Ying, Jialing Pan, Zhiguo Liu, Xuanxuan Dai, Weishan Zhuge, Guang Liang, and Yeping Ruan
Molecular Carcinogenesis, 2017, Volume 56, Number 7, Page 1765
[12]
Valentina Basile, Silvia Belluti, Erika Ferrari, Chiara Gozzoli, Sonia Ganassi, Daniela Quaglino, Monica Saladini, Carol Imbriano, and Regine Schneider-Stock
PLoS ONE, 2013, Volume 8, Number 1, Page e53664
[13]
Steven C. Pino, Bryan O'Sullivan-Murphy, Erich A. Lidstone, Chaoxing Yang, Kathryn L. Lipson, Agata Jurczyk, Philip diIorio, Michael A. Brehm, John P. Mordes, Dale L. Greiner, Aldo A. Rossini, Rita Bortell, and Dominik Hartl
PLoS ONE, 2009, Volume 4, Number 5, Page e5468
[14]
Yong Mao, Mincheng Zhang, Jiapei Yang, Hao Sun, Dandan Wang, Xiaoxia Zhang, Feng Yu, and Ji Li
Toxicol. Res., 2017, Volume 6, Number 3, Page 297
[15]
Mahendra Pal Singh, Jaehong Han, and Sun Chul Kang
Biomedicine & Pharmacotherapy, 2017, Volume 88, Page 151
[16]
Ling Tang, Yunong Zhang, Yu Jiang, Lloyd Willard, Edlin Ortiz, Logan Wark, Denis Medeiros, and Dingbo Lin
Experimental Biology and Medicine, 2011, Volume 236, Number 9, Page 1051
[17]
Dominik Fröhlich, Alexandra K. Suchowerska, Ziggy H.T. Spencer, Georg von Jonquieres, Claudia B. Klugmann, Andre Bongers, Fabien Delerue, Holly Stefen, Lars M. Ittner, Thomas Fath, Gary D. Housley, and Matthias Klugmann
Neurobiology of Disease, 2017, Volume 97, Page 24
[18]
Heejeong Kim, Eun Ah Shin, Chang Geun Kim, Dae Young Lee, Bonglee Kim, Nam-In Baek, and Sung-Hoon Kim
Phytotherapy Research, 2016, Volume 30, Number 11, Page 1841
[19]
Sang-Hun Kim, Kwang-Youn Kim, Sun-Nyoung Yu, Young-Kyo Seo, Sung-Sik Chun, Hak-Sun Yu, and Soon-Cheol Ahn
BMC Cancer, 2016, Volume 16, Number 1
[20]
Katia L. P. Morais, Mario Thiego Fernandes Pacheco, Carolina Maria Berra, Rosemary V. Bosch, Juliana Mozer Sciani, Roger Chammas, Renata de Freitas Saito, Asif Iqbal, and Ana Marisa Chudzinski-Tavassi
Molecular and Cellular Biochemistry, 2016, Volume 415, Number 1-2, Page 119
[21]
Dongwen Wang, Xiaobin Yuan, Caoyang Hu, Bin Zhang, Hongfei Gao, Dong Wang, Junjie Chi, Qiang Jing, Shulin Wu, and Chin-Lee Wu
Neurourology and Urodynamics, 2017, Volume 36, Number 1, Page 65
[22]
Noboru Iwasaki, Yoshiki Sugiyama, Shuichi Miyazaki, Hiroshi Nakagawa, Kazuhiko Nishimura, and Saburo Matsuo
Journal of Cellular Biochemistry, 2015, Volume 116, Number 7, Page 1300
[23]
S. Cao, B. Yan, Y. Lu, G. Zhang, J. Li, W. Guo, Y. Zhao, and S. Zhang
Transplantation Proceedings, 2015, Volume 47, Number 2, Page 354
[24]
Zequn Jiang, Weiping Chen, Xiaojing Yan, Lei Bi, Sheng Guo, and Zhen Zhan
Acta Biochimica et Biophysica Sinica, 2014, Volume 46, Number 5, Page 357
[25]
Saeid Ghavami, Pawan Sharma, Behzad Yeganeh, Oluwaseun O. Ojo, Aruni Jha, Mark M. Mutawe, Hessam H. Kashani, Marek J. Los, Thomas Klonisch, Helmut Unruh, and Andrew J. Halayko
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2014, Volume 1843, Number 7, Page 1259
[26]
Maurizio Sorice, Vincenzo Mattei, Paola Matarrese, Tina Garofalo, Antonella Tinari, Lucrezia Gambardella, Laura Ciarlo, Valeria Manganelli, Vincenzo Tasciotti, Roberta Misasi, and Walter Malorni
Communicative & Integrative Biology, 2012, Volume 5, Number 2, Page 217
[27]
Carlos A. Barrero, Oscar Perez-Leal, Mark Aksoy, Camilo Moncada, Rong Ji, Yolanda Lopez, Karthik Mallilankaraman, Muniswamy Madesh, Gerard J. Criner, Steven G. Kelsen, and Salim Merali
American Journal of Respiratory and Critical Care Medicine, 2013, Volume 188, Number 6, Page 673
[28]
H Jiang, J Sun, Q Xu, Y Liu, J Wei, C Y F Young, H Yuan, and H Lou
Cell Death and Disease, 2013, Volume 4, Number 8, Page e761
[29]
Steven G. Kelsen, Xunbao Duan, Rong Ji, Oscar Perez, Chunli Liu, and Salim Merali
American Journal of Respiratory Cell and Molecular Biology, 2008, Volume 38, Number 5, Page 541
[30]
Jieyu Liu, Yu Liu, Li Chen, Yuehui Wang, and Junqi Li
Journal of Diabetes Research, 2013, Volume 2013, Page 1
[31]
Min Zheng, Qinggao Zhang, Yeonsoo Joe, Bong Hee Lee, Do Gon Ryu, Kang Beom Kwon, Stefan W. Ryter, and Hun Taeg Chung
International Immunopharmacology, 2013, Volume 15, Number 3, Page 517
[32]
[33]
Durvanei Augusto Maria, Jean Gabriel de Souza, Katia L. P. Morais, Carolina Maria Berra, Hamilton de Campos Zampolli, Marilene Demasi, Simone Michaela Simons, Renata de Freitas Saito, Roger Chammas, and Ana Marisa Chudzinski-Tavassi
Investigational New Drugs, 2013, Volume 31, Number 3, Page 493
[34]
Sandra M. Sancho-Martínez, Laura Prieto-García, Marta Prieto, José M. López-Novoa, and Francisco J. López-Hernández
Pharmacology & Therapeutics, 2012, Volume 136, Number 1, Page 35
[36]
Liang Luo, Tangfeng Lv, Qian Wang, Ting Zhang, Xiaoling Gu, Feng Xu, and Yong Song
Mediators of Inflammation, 2012, Volume 2012, Page 1
[37]
S.-I. Lee, K.-L. Kang, S.-I. Shin, Y. Herr, Y.-M. Lee, and E.-C. Kim
Journal of Periodontal Research, 2012, Volume 47, Number 3, Page 299
[38]
Jung Lee Moon, Sung Youl Kim, Seoung Woo Shin, and Jeen-Woo Park
Biochemical and Biophysical Research Communications, 2012, Volume 417, Number 2, Page 760
[39]
I. K. Kolomiytseva
Biochemistry (Moscow), 2011, Volume 76, Number 12, Page 1291
[40]
Wei-Kun Hu, Rong Liu, Han Pei, and Bin Li
Experimental Diabetes Research, 2012, Volume 2012, Page 1
[41]
Chun-Han Chen, Cho-Hwa Liao, Ya-Ling Chang, Jih-Hwa Guh, Shiow-Lin Pan, and Che-Ming Teng
Cancer Letters, 2012, Volume 315, Number 1, Page 1
[42]
Pragathi Pallepati and Diana A. Averill-Bates
Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2011, Volume 1813, Number 12, Page 1987
[43]
Huanhai Liu, Shuwei Zhao, Yinfang Zhang, Jian Wu, Hu Peng, Jingping Fan, and Jianchun Liao
Journal of Cellular Biochemistry, 2011, Volume 112, Number 12, Page 3695
[44]
Zhiwei Quan, Jun Gu, Ping Dong, Jianhua Lu, Xiangsong Wu, Wenguang Wu, Xiaozhou Fei, Songgang Li, Yong Wang, Jianwei Wang, and Yingbin Liu
Cancer Letters, 2010, Volume 295, Number 2, Page 252
[45]
C Penas, M Font-Nieves, J Forés, V Petegnief, A Planas, X Navarro, and C Casas
Cell Death and Differentiation, 2011, Volume 18, Number 10, Page 1617
[46]
Guanghui Liu, Yingying Sun, Zhenhua Li, Tao Song, Haibin Wang, Yun Zhang, and Zhiming Ge
Biochemical and Biophysical Research Communications, 2008, Volume 370, Number 4, Page 651
[47]
Hyun-Ock Pae, Sun-Oh Jeong, Gil-Saeng Jeong, Ki Mo Kim, Hak Sung Kim, Soon-Ai Kim, Youn-Chul Kim, Sung-Don Kang, Byeong-Nam Kim, and Hun-Taeg Chung
Biochemical and Biophysical Research Communications, 2007, Volume 353, Number 4, Page 1040
[48]
Marcelo G. Roma, Flavia D. Toledo, Andrea C. Boaglio, Cecilia L. Basiglio, Fernando A. Crocenzi, and Enrique J. Sánchez Pozzi
Clinical Science, 2011, Volume 121, Number 12, Page 523
[49]
Sudkhate Molthathong, Arun Buaklin, Saengchan Senapin, Sirawut Klinbunga, Jiraporn Rojtinnakorn, and Timothy W. Flegel
Fish & Shellfish Immunology, 2008, Volume 25, Number 1-2, Page 40
[50]
Wen-Chin Weng, Wang-Tso Lee, Wen-Ming Hsu, Bei-En Chang, and Hsinyu Lee
Journal of the Formosan Medical Association, 2011, Volume 110, Number 7, Page 428
[51]
Ki Seong Eom, Hyung-Jin Kim, Hong-Seob So, Raekil Park, and Tae Young Kim
Biological & Pharmaceutical Bulletin, 2010, Volume 33, Number 10, Page 1644
[52]
Seung-Ki Min, Sun-Kyung Lee, Jae-Sang Park, Jun Lee, Jun-Young Paeng, Sang-Im Lee, Hwa-Jeong Lee, Youngho Kim, Hyun-Ock Pae, Suk-Keun Lee, and Eun-Cheol Kim
Journal of Oral Pathology & Medicine, 2008, Volume 37, Number 8, Page 490
[54]
Liying Guan, Bingshe Han, Jian Li, Zhushi Li, Fang Huang, Yang Yang, and Caimin Xu
Annals of Hematology, 2009, Volume 88, Number 8, Page 733
[55]
Ludovic Pineau, Jenny Colas, Sébastien Dupont, Laurent Beney, Pierrette Fleurat-Lessard, Jean-Marc Berjeaud, Thierry Bergès, and Thierry Ferreira
Traffic, 2009, Volume 10, Number 6, Page 673
[56]
Wensheng Lin and Brian Popko
Nature Neuroscience, 2009, Volume 12, Number 4, Page 379
[58]
Liying Guan, Binshe Han, Zhushi Li, Fangyuan Hua, Fang Huang, Wei Wei, Yang Yang, and Caimin Xu
Apoptosis, 2009, Volume 14, Number 2, Page 218
[59]
Renata Novak Kujundžić, Ivana Grbeša, Mirko Ivkić, Meena Katdare, and Koraljka Gall-Trošelj
Journal of Cellular Biochemistry, 2008, Volume 104, Number 5, Page 1781

Comments (0)

Please log in or register to comment.
Log in