Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

Online
ISSN
1689-1392
See all formats and pricing
More options …
Volume 11, Issue 4

Issues

AtGRP7 is involved in the regulation of abscisic acid and stress responses in arabidopsis

Shuqing Cao / Li Jiang / Shiyong Song / Ran Jing / Guosheng Xu
Published Online: 2006-09-26 | DOI: https://doi.org/10.2478/s11658-006-0042-2

Abstract

The Arabidopsis AtGRP7 gene, encoding a glycine-rich RNA-binding protein, has been shown to be involved in the regulation of a circadian-regulated negative feedback loop. However, little is known about the role of AtGRP7 in mediating abscisic acid (ABA) and stress responses. Here, we show that AtGRP7 plays a role in both. AtGRP7 was repressed by ABA, high salt and mannitol. Disruption of AtGRP7 by T-DNA insertion led to hypersensitive responses to ABA in both seed germination and root growth assays. The atgrp7-1 mutant was also hypersensitive to osmotic stress conditions, such as high salt and high concentrations of mannitol. In addition, the atgrp7-1 mutant plants accumulated significantly higher transcript levels of two ABA-and stress-inducible genes, RD29A and RAB18, compared with the wild-type plants. Taken together, these results suggest that AtGRP7 is involved in the regulation of ABA and stress responses.

Keywords: AtGRP7 gene; Abscisic acid; Osmotic stress

  • [1] Fedoroff, N.V. Cross-talk in abscisic acid signaling. Sci. STKE RE10 (2002) 1–12. Google Scholar

  • [2] Finkelstein, R.R., Gampala, S.S.L. and Rock, C.D. Abscisic acid signaling in seeds and seedlings. Plant Cell (Suppl). 14 (2002) S15–S45. Google Scholar

  • [3] Himmelbach, A., Yang, Y. and Grill, E. Relay and control of abscisic acid signaling. Curr. Opin. Plant Biol. 6 (2003) 470–479. http://dx.doi.org/10.1016/S1369-5266(03)00090-6CrossrefGoogle Scholar

  • [4] Giraudat, J. Abscisic acid signaling. Curr. Opin. Cell Biol. 7 (1995) 232–238. http://dx.doi.org/10.1016/0955-0674(95)80033-6CrossrefGoogle Scholar

  • [5] Pandey, G.K., Cheong, Y.H., Kim, K.N., Grant, J.J., Li, L., Hung, W., D’Angelo, C., Weinl, S., Kudla, J. and Luan, S. The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Plant Cell. 16 (2004) 1912–1924. http://dx.doi.org/10.1105/tpc.021311CrossrefGoogle Scholar

  • [6] Kim, K.N., Cheong, Y.H., Grant, J.J., Pandey, G.K. and Luan, S. CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell. 15 (2003) 411–423. http://dx.doi.org/10.1105/tpc.006858CrossrefGoogle Scholar

  • [7] Sridha, S. and Wu, K. Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. Plant J. 46 (2006) 124–133. http://dx.doi.org/10.1111/j.1365-313X.2006.02678.xCrossrefGoogle Scholar

  • [8] Pandey, G.K., Grant, J.J., Cheong, Y.H., Kim, B.G., Li, L. and Luan, S. ABR1, an APETALA2-domain transcription factor that functions as a repressor of ABA response in Arabidopsis. Plant Physiol. 139 (2005) 1185–1193. http://dx.doi.org/10.1104/pp.105.066324CrossrefGoogle Scholar

  • [9] Razem, F.A., El-Kereamy, A., Abrams S.R. and Hill R.D. The RNA-binding protein FCA is an abscisic acid receptor. Nature 439 (2006) 290–294. http://dx.doi.org/10.1038/nature04373CrossrefGoogle Scholar

  • [10] Sato, N. A cold-regulated cyanobacterial gene cluster encodes RNAbinding protein and ribosomal protein S21. Plant Mol. Biol. 24 (1994) 819–823. http://dx.doi.org/10.1007/BF00029864CrossrefGoogle Scholar

  • [11] Sato, N. A family of cold-regulated RNA-binding protein genes in the cyanobacterium Anabaena variabilis M3. Nucleic. Acids Res. 23 (1995) 2161–2167. Google Scholar

  • [12] Gómez, J., Sánchez, M.D., Stiefel, V., Rigau, J., Puigdomènech, P. and Pagès, M. A gene induced by the plant hormone abscisic acid in response to water stress encodes a glycine-rich protein. Nature 334 (1988) 262–264. http://dx.doi.org/10.1038/334262a0CrossrefGoogle Scholar

  • [13] Bergeron, D., Beauseigle, D. and Bellemare, G. Sequence and expression of a gene encoding a protein with RNA-binding and glycine-rich domains in Brassica napus. Biochim. Biophys. Acta. 1216 (1993) 123–125. Google Scholar

  • [14] Hirose, T., Sugita, M. and Sugiura, M. cDNA structure, expression and nucleic acid-binding properties of three RNA-binding proteins in tobacco: occurrence of tissue-specific alternative splicing. Nucleic. Acids Res. 21 (1993) 3981–3987. CrossrefGoogle Scholar

  • [15] Carpenter, C.D., Kreps, J.A. and Simon, A.E. Genes encoding glycinerich Arabidopsis thaliana proteins with RNA-binding motifs are influenced by cold treatment and an endogenous circadian rhythm. Plant Physiol. 104 (1994) 1015–1025. http://dx.doi.org/10.1104/pp.104.3.1015CrossrefGoogle Scholar

  • [16] Derry, J.M., Kerns, J.A. and Francke, U. RBM3, a novel human gene Xp11.23 with putative RNA-binding domain. Hum. Mol. Genet. 4 (1995) 2307–2311. Google Scholar

  • [17] Kwak, K.J., Kim, Y.O. and Kang, H. Characterization of transgenic Arabidopsis plants overexpressing GR-RBP4 under high salinity, dehydration, or cold stress. J. Exp. Bot. 56 (2005) 3007–3016. http://dx.doi.org/10.1093/jxb/eri298CrossrefGoogle Scholar

  • [18] Heintzen, C., Nater, M., Apel, K. and Staiger, D. AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 94 (1997) 8515–8520. http://dx.doi.org/10.1073/pnas.94.16.8515CrossrefGoogle Scholar

  • [19] Murashige, T. and Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant 15 (1962) 473–497. http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.xCrossrefGoogle Scholar

  • [20] Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P., Stevenson, D.K., Zimmerman, J., Barajas, P., Cheuk, R. Gadrinab, C., Heller, C., Jeske, A., Koesema, E., Meyers, C.C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Hom, E., Karnes, M., Mulholland, C., Ndubaku R., Schmidt, I., Guzman, P., Aguilar-Henonin, L., Schmid, M., Weigel, D., Carter, D.E., Marchand, T., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W.L., Berry, C.C. and Ecker J.R. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301 (2003) 653–657. http://dx.doi.org/10.1126/science.1086391CrossrefGoogle Scholar

  • [21] Staiger, D. and Apel, K. Circadian clock-regulated expression of an RNA-binding protein in Arabidopsis: characterisation of a minimal promoter element. Mol. Gen. Genet. 261 (1999) 811–819. http://dx.doi.org/10.1007/s004380050025CrossrefGoogle Scholar

  • [22] Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L. and Gruissem, W. GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol. 136 (2004) 2621–2632. http://dx.doi.org/10.1104/pp.104.046367CrossrefGoogle Scholar

  • [23] Rock, C.D. Pathways to abscisic acid-regulated gene expression. New Phytol. 148 (2000) 357–396. http://dx.doi.org/10.1046/j.1469-8137.2000.00769.xCrossrefGoogle Scholar

  • [24] Leung, J. and Giraudat, J. Abscisic acid signal transduction. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49 (1998) 199–222. http://dx.doi.org/10.1146/annurev.arplant.49.1.199CrossrefGoogle Scholar

  • [25] Nishiyama, H., Itoh, K., Kaneko, Y., Kishishita, M., Yoshida, O. and Fujita, J. A glycine-rich RNA-binding protein mediating cold-inducible suppression of mammalian cell growth. J. Cell Biol. 137 (1997) 899–908. http://dx.doi.org/10.1083/jcb.137.4.899CrossrefGoogle Scholar

  • [26] Seo, M. and Koshiba, T. Complex regulation of ABA biosynthesis in plants. Trends Plant Sci. 7 (2002) 41–48. http://dx.doi.org/10.1016/S1360-1385(01)02187-2CrossrefGoogle Scholar

  • [27] Zeevaart, J.A.D. and Creelman, R.A. Metabolism and physiology of abscisic acid. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39 (1988) 439–473. http://dx.doi.org/10.1146/annurev.pp.39.060188.002255CrossrefGoogle Scholar

About the article

Published Online: 2006-09-26

Published in Print: 2006-12-01


Citation Information: Cellular and Molecular Biology Letters, Volume 11, Issue 4, Pages 526–535, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-006-0042-2.

Export Citation

© 2006 University of Wrocław, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Magdalena Czolpinska and Michal Rurek
Frontiers in Plant Science, 2018, Volume 9
[2]
Valerie Van Ruyskensvelde, Frank Van Breusegem, and Katrien Van Der Kelen
Free Radical Biology and Medicine, 2018
[3]
Mengmeng Zhu, Shaojun Dai, Scott McClung, Xiufeng Yan, and Sixue Chen
Molecular & Cellular Proteomics, 2009, Volume 8, Number 4, Page 752
[4]
Yuanqing Jiang, Bo Yang, Neil S. Harris, and Michael K. Deyholos
Journal of Experimental Botany, 2007, Volume 58, Number 13, Page 3591
[5]
Xian Deng and Xiaofeng Cao
Current Opinion in Plant Biology, 2017, Volume 35, Page 45
[6]
Xinzhou Zhu, Christoph Bührer, and Sven Wellmann
Cellular and Molecular Life Sciences, 2016, Volume 73, Number 20, Page 3839
[7]
Jan Skalák, Martin Černý, Petr Jedelský, Jana Dobrá, Eva Ge, Jan Novák, Marie Hronková, Petre Dobrev, Radomira Vanková, and Břetislav Brzobohatý
Journal of Experimental Botany, 2016, Volume 67, Number 9, Page 2861
[8]
Elain Gutierrez-Carbonell, Giuseppe Lattanzio, Alfonso Albacete, Juan José Rios, Julia Kehr, Anunciación Abadía, Michael A. Grusak, Javier Abadía, and Ana Flor López-Millán
PROTEOMICS, 2015, Volume 15, Number 22, Page 3835
[9]
Pil Joon Seo and Paloma Mas
Trends in Plant Science, 2015, Volume 20, Number 4, Page 230
[10]
Oana Ciuzan, John Hancock, Doru Pamfil, Ian Wilson, and Michael Ladomery
Physiologia Plantarum, 2015, Volume 153, Number 1, Page 1
[11]
Sami Irar, Esther M. González, Cesar Arrese-Igor, and Daniel Marino
Physiologia Plantarum, 2014, Volume 152, Number 4, Page 634
[12]
Yunhao Zhu, Guosheng Zhu, Qiaosheng Guo, Zaibiao Zhu, Changlin Wang, and Zuoyi Liu
International Journal of Molecular Sciences, 2013, Volume 14, Number 10, Page 20614
[13]
B. Löhr, C. Streitner, A. Steffen, T. Lange, and D. Staiger
Molecular Biology Reports, 2014, Volume 41, Number 1, Page 439
[14]
Elain Gutierrez-Carbonell, Giuseppe Lattanzio, Ruth Sagardoy, Jorge Rodríguez-Celma, Juan José Ríos Ruiz, Andrea Matros, Anunciación Abadía, Javier Abadía, and Ana-Flor López-Millán
Journal of Proteomics, 2013, Volume 94, Page 149
[15]
Rossana Henriques and Paloma Mas
Seminars in Cell & Developmental Biology, 2013, Volume 24, Number 5, Page 399
[16]
Eunsook Chung, Selvam Ayarpadikannan, Chang-Woo Cho, Hyun-Ah So, Kyoungmee Kim, Soonok Kim, Myounghai Kwak, Kee-Young Kim, Doh Hoon Kim, Seon-Woo Lee, and Jai-Heon Lee
Genes & Genomics, 2012, Volume 34, Number 6, Page 663
[17]
Tianxue Liu, Li Zhang, Zuli Yuan, Xiuli Hu, Minghui Lu, Wei Wang, and Ying Wang
Acta Physiologiae Plantarum, 2013, Volume 35, Number 2, Page 501
[18]
Hwa Jung Lee, Jin Seo Kim, Seung Jin Yoo, Eun Young Kang, Song Hee Han, Kwang-Yeol Yang, Young Cheol Kim, Brian McSpadden Gardener, and Hunseung Kang
Plant Physiology and Biochemistry, 2012, Volume 60, Page 46
[19]
Francesca Fanucchi, Emanuele Alpi, Stefano Olivieri, Carlo V. Cannistraci, Angela Bachi, Amedeo Alpi, and Massimo Alessio
Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 2012, Volume 1824, Number 6, Page 813
[20]
Andreas M. Fischer
Critical Reviews in Plant Sciences, 2012, Volume 31, Number 2, Page 124
[21]
Shuncai Wang, Rongchao Wang, Dong Liang, Fengwang Ma, and Huairui Shu
Molecular Biology Reports, 2012, Volume 39, Number 4, Page 4145
[22]
Iris Meier
Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2012, Volume 1819, Number 6, Page 531
[23]
Zdravko J. Lorković
Trends in Plant Science, 2009, Volume 14, Number 4, Page 229
[24]
Vera Göhre and Silke Robatzek
Annual Review of Phytopathology, 2008, Volume 46, Number 1, Page 189
[25]
Fengru Wang, Ming-Yi Bai, Zhiping Deng, Juan A. Oses-Prieto, Alma L. Burlingame, Tiegang Lu, Kang Chong, and Zhi-Yong Wang
Journal of Integrative Plant Biology, 2010, Volume 52, Number 12, Page 1075
[26]
Jan C. Schöning, Corinna Streitner, Damian R. Page, Sven Hennig, Kenko Uchida, Eva Wolf, Masaki Furuya, and Dorothee Staiger
The Plant Journal, 2007, Volume 52, Number 6, Page 1119
[27]
Fabian Schmidt, Aline Marnef, Man-Kim Cheung, Ian Wilson, John Hancock, Dorothee Staiger, and Michael Ladomery
Molecular Biology Reports, 2010, Volume 37, Number 2, Page 839
[28]
Corinna Streitner, Selahattin Danisman, Franziska Wehrle, Jan C. Schöning, James R. Alfano, and Dorothee Staiger
The Plant Journal, 2008, Volume 56, Number 2, Page 239
[29]
Jin Sun Kim, Hyun Ju Jung, Hwa Jung Lee, Kyung Ae Kim, Chang-Hyo Goh, Youngmin Woo, Seung Han Oh, Yeon Soo Han, and Hunseung Kang
The Plant Journal, 2008, Volume 55, Number 3, Page 455
[30]
E. Garbarino-Pico and C. B. Green
Cold Spring Harbor Symposia on Quantitative Biology, 2007, Volume 72, Number 1, Page 145

Comments (0)

Please log in or register to comment.
Log in