Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Cellular and Molecular Biology Letters

Editor-in-Chief: /


IMPACT FACTOR 2016: 1.260
5-year IMPACT FACTOR: 1.506

CiteScore 2016: 1.56

SCImago Journal Rank (SJR) 2016: 0.615
Source Normalized Impact per Paper (SNIP) 2016: 0.470

Online
ISSN
1689-1392
See all formats and pricing
More options …
Volume 11, Issue 4 (Dec 2006)

Plant dehydrins — Tissue location, structure and function

Tadeusz Rorat
Published Online: 2006-09-14 | DOI: https://doi.org/10.2478/s11658-006-0044-0

Abstract

Dehydrins (DHNs) are part of a large group of highly hydrophilic proteins known as LEA (Late Embryogenesis Abundant). They were originally identified as group II of the LEA proteins. The distinctive feature of all DHNs is a conserved, lysine-rich 15-amino acid domain, EKKGIMDKIKEKLPG, named the K-segment. It is usually present near the C-terminus. Other typical dehydrin features are: a track of Ser residues (the S-segment); a consensus motif, T/VDEYGNP (the Y-segment), located near the N-terminus; and less conserved regions, usually rich in polar amino acids (the Φ-segments). They do not display a well-defined secondary structure. The number and order of the Y-, S-and K-segments define different DHN sub-classes: YnSKn, YnKn, SKn, Kn and KnS. Dehydrins are distributed in a wide range of organisms including the higher plants, algae, yeast and cyanobacteria. They accumulate late in embryogenesis, and in nearly all the vegetative tissues during normal growth conditions and in response to stress leading to cellular dehydration (e.g. drought, low temperature and salinity). DHNs are localized in different cell compartments, such as the cytosol, nucleus, mitochondria, vacuole, and the vicinity of the plasma membrane; however, they are primarily localized to the cytoplasm and nucleus. The precise function of dehydrins has not been established yet, but in vitro experiments revealed that some DHNs (YSKn-type) bind to lipid vesicles that contain acidic phospholipids, and others (KnS) were shown to bind metals and have the ability to scavenge hydroxyl radicals [Asghar, R. et al. Protoplasma 177 (1994) 87–94], protect lipid membranes against peroxidation or display cryoprotective activity towards freezing-sensitive enzymes. The SKn-and K-type seem to be directly involved in cold acclimation processes. The main question arising from the in vitro findings is whether each DHN structural type could possess a specific function and tissue distribution. Much recent in vitro data clearly indicates that dehydrins belonging to different subclasses exhibit distinct functions.

Keywords: Dehydration stress; Drought; Cold acclimation; Freezing tolerance; LEA proteins; Dehydrin

  • [1] Ingram, J. and Bartels, D. The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47 (1996) 377–403. http://dx.doi.org/10.1146/annurev.arplant.47.1.377CrossrefGoogle Scholar

  • [2] Allagulova, Ch.R., Gilamov, F.R., Shakirova, F.M. and Vakhitov, V.A. The plant dehydrins: structure and functions. Biochemistry (Moscow) 68 (2003) 945–951. http://dx.doi.org/10.1023/A:1026077825584CrossrefGoogle Scholar

  • [3] Garay-Arroyo A., Colmenoro-Florest J.M., Garciarrubio A. and Covarrubias A.A. Highly hydrophilic proteins in prokaryotes and eucaryotes are common during conditions of water deficit. J. Biol. Chem. 275 (2000) 5668–5674. http://dx.doi.org/10.1074/jbc.275.8.5668CrossrefGoogle Scholar

  • [4] Dure, L., Crouch, M., Harada, J., Ho, T.-H.D., Mundy, J., Quatrano, R., Thomas, T. and Sung, Z.R. Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol. Biol. 12 (1989) 475–486. http://dx.doi.org/10.1007/BF00036962CrossrefGoogle Scholar

  • [5] Cuming, A. C. LEA proteins. In Seed Proteins (Shewry, P. R. and Casey, R., Eds.), (1999) pp. 753–780, Kluwer Academic Publishers, Dordrecht. Google Scholar

  • [6] Bray, E. A. Molecular responses to water deficit. Plant Physiol. 103 (1993) 1035–1040 Google Scholar

  • [7] Wise, M.J. LEAping to conclusions: a computational reanalysis of late embryogenesis abundant proteins and their possible roles. BMC Bioinform. 4 (2003) 52. http://dx.doi.org/10.1186/1471-2105-4-52CrossrefGoogle Scholar

  • [8] McCubbin, W.D., Kay, C.M. and Lane, B.G. Hydrodynamic and optical properties of the wheat germ Em protein. Can. J. Biochem. Cell Biol. 63 (1985) 803–811. http://dx.doi.org/10.1139/o85-102CrossrefGoogle Scholar

  • [9] DureIII, L. Occurrence of a repeating 11-mer amino acid sequence motif in diverse organisms. Protein Pept. Lett. 8 (2001) 115–122. http://dx.doi.org/10.2174/0929866013409643CrossrefGoogle Scholar

  • [10] Solomon, A., Salomon, R., Paperna, I. and Glazer, I. Desiccation stress of entomopathogenic nematodes induces the accumulation of a novel heat stable product. Parasitology 121 (2000) 409–416. http://dx.doi.org/10.1017/S0031182099006563CrossrefGoogle Scholar

  • [11] Browne, J., Tunnacliffe, A. and Burnell, A. Plant desiccation gene found in a nematode. Nature (London) 416 (2002) 38. http://dx.doi.org/10.1038/416038aCrossrefGoogle Scholar

  • [12] Goyal, K., Tisi, L., Basran, A., Browne, J., Burnell, A., Zurdo, J. and Tunnacliffe, A. Transition from natively unfolded to folded state induced by desiccation in an anhydrobiotic nematode protein. J. Biol. Chem. 278 (2003) 12977–12984. http://dx.doi.org/10.1074/jbc.M212007200CrossrefGoogle Scholar

  • [13] Wolkers, W.F., McCready, S., Brandt, W.F., Lindsey, G.G. and Hoekstra, F.A. Isolation and characterization of a D-7 LEA protein that stabilizes glasses in vitro. Biochim. Biophys. Acta 1544 (2001) 196–206. Google Scholar

  • [14] Close, T.J. Dehydrins: A commonality in the response of plants to dehydration and low temperature. Physiol. Plant 100 (1997) 291–296. http://dx.doi.org/10.1111/j.1399-3054.1997.tb04785.xCrossrefGoogle Scholar

  • [15] Campbell, S.A. and Close, T.J. Dehydrins: genes, proteins, and association with phenotypic traits. New Phytol. 137 (1997) 61–74. http://dx.doi.org/10.1046/j.1469-8137.1997.00831.xCrossrefGoogle Scholar

  • [16] Li, R., Brawley, S.H. and Close, T.J. Dehydrin-like proteins in fucoid algae. Plant Physiol. 114 (1997) 479–479. Google Scholar

  • [17] Mitwisha, L., Brandt, W., McCread, L. and Lindsey, G.G. HSP12 is a LEA-like protein in Saccharomyces cerevisiae. Plant Mol. Biol. 37 (1998) 513–521. http://dx.doi.org/10.1023/A:1005904219201CrossrefGoogle Scholar

  • [18] Davidson, W.S., Jonas, A., Clayton, D.F. and George, J.M. “Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes.” J. Biol. Chem. 273 (1998) 9443–9449. http://dx.doi.org/10.1074/jbc.273.16.9443CrossrefGoogle Scholar

  • [19] Segrest, J.P., Deloof, H., Dohlman, J.G., Brouilette C.G. and Anantharamaiah, G.M. Amphipathic helix motif: classes and properties. Proteins Struct. Funct. Genet. 8 (1990) 103–117. http://dx.doi.org/10.1002/prot.340080202CrossrefGoogle Scholar

  • [20] Close, T.J., Kortt, A.A. and Chandler, P.M. A cDNA-Based Comparison of Dehydration-Induced Proteins (Dehydrins) in Barley and Corn. Plant Mol. Biol. 13 (1989) 95–108. http://dx.doi.org/10.1007/BF00027338CrossrefGoogle Scholar

  • [21] Lisse, T., Bartels, D., Kalbitzer, H.R. and Jaenicke, R. The recombinant dehydrinlike desiccation stress protein from the resurrection plant Craterostigma plantagineum displays no defined three-dimensional structure in its native state. Biol. Chem. 377 (1996) 555–561. Google Scholar

  • [22] Ismail, A.M., Hall, A.E. and Close, T.J. Purification and partial characterization of a dehydrin involved in chilling tolerance during seedling emergence of cowpea. Plant Physiol. 120 (1999a) 237–244. http://dx.doi.org/10.1104/pp.120.1.237CrossrefGoogle Scholar

  • [23] Puhakainen, T., Hess, M.V., Mäkela, P., Svenson, J., Heino, P. and Palva, E.T. Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol. Biol. 54 (2004) 743–753. http://dx.doi.org/10.1023/B:PLAN.0000040903.66496.a4CrossrefGoogle Scholar

  • [24] Choi, D.W., Zhu, B. and Close, T.J. The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv Dicktoo. Theor. Appl. Genet. 98 (1999) 1234–1247. http://dx.doi.org/10.1007/s001220051189CrossrefGoogle Scholar

  • [25] Rodriguez, E.M., Svenson, J.T., Malatrasi, M., Choi, D.-W and Close, T.J. Barley Dhn13 encodes a KS-type dehydrin with constitutive and stress responsive expression. Theor. Appl. Genet. 110 (2005) 852–858. http://dx.doi.org/10.1007/s00122-004-1877-4CrossrefGoogle Scholar

  • [26] Svenson, J., Ismail, A.M., Palva, E.T and Close, T.J. Dehydrins. In: Sensing, Signalling and Cell Adaptation (Storey, K.B. and Storey, J.M. Eds.), Elsevier Science B.V. (2002) 155–171. Google Scholar

  • [27] Goday, A., Jensen, A.B., Culianezmacia, F.A., Alba, M.M., Figueras, M., Serratosa, J., Torrent, M. and Pages, M. The maize abscisic acid-responsive protein RAB17 is located in the nucleus and interacts with nuclear-localization signals. Plant Cell 6 (1994) 351–360. http://dx.doi.org/10.1105/tpc.6.3.351CrossrefGoogle Scholar

  • [28] Robertson, M. and Chandler, P.M. A dehydrin cognate protein from pea (Pisum sativum L.) with an atypical pattern of expression. Plant Mol. Biol. 26 (1994) 805–816. http://dx.doi.org/10.1007/BF00028850CrossrefGoogle Scholar

  • [29] Kiyosue, T., Yamaguchi-Shinozaki, K., Shinozaki, K., Kamada, H. and Harada, H. cDNA cloning of Ecp40, an embryogenic-cell protein in carrot, and its expression during somatic and zygotic embryogenesis. Plant Mol. Biol. 21 (1993) 1053–1068. http://dx.doi.org/10.1007/BF00023602CrossrefGoogle Scholar

  • [30] Momma, M., Haraguchi, K., Saito, M., Chikuni, K. and Harada, K. Purification and characterization of the acid soluble 26-kDa polypeptide from soybean seeds. Biosci. Biotechnol. Biochem. 61 (1997) 1286–1291. http://dx.doi.org/10.1271/bbb.61.1286CrossrefGoogle Scholar

  • [31] Momma, M., Kaneko, S., Haraguchi, K. and Matsukura, U. Peptide mapping and assessment of cryoprotective activity of 26/27-kDa dehydrin from soybean seeds. Biosci. Biotechnol. Biochem. 67 (2003) 1832–1835. http://dx.doi.org/10.1271/bbb.67.1832CrossrefGoogle Scholar

  • [32] Nylander, M., Svensson, J., Palva, E.T. and Welin, B.V. Stress-induced accumulation and tissue-specific localisation of dehydrins in Arabidopsis thaliana. Plant Mol. Biol. 45 (2001) 263–279. http://dx.doi.org/10.1023/A:1006469128280CrossrefGoogle Scholar

  • [33] Bravo, L.A., Close, T.J., Corcuera, L.J. and Guy, C.L. Characterization of an 80-kDa dehydrin-like protein in barley responsive to cold acclimation. Physiol. Plant. 106 (1999) 177–183. http://dx.doi.org/10.1034/j.1399-3054.1999.106205.xCrossrefGoogle Scholar

  • [34] Houde, M., Daniel, C., Lachapelle, M., Allard, F., Laliberte, S. and Sarhan, F. Immunolocalization of freezing-tolerance-associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. Plant J. 8 (1995) 583–593. http://dx.doi.org/10.1046/j.1365-313X.1995.8040583.xCrossrefGoogle Scholar

  • [35] Danyluk, J., Perron, A., Houde, M., Limin, A., Fowler, B., Benhamou, N. and Sarhan, F. Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10 (1998) 623–638. http://dx.doi.org/10.1105/tpc.10.4.623CrossrefGoogle Scholar

  • [36] Godoy, J.A., Lunar, R., Torresschumann, S., Moreno, J., Rodrigo, R.M. and Pintortoro, J.A. Expression, tissue distribution and subcellular-localization of dehydrin Tas14 in salt-stressed tomato plants. Plant Mol. Biol. 26 (1994) 1921–1934. http://dx.doi.org/10.1007/BF00019503CrossrefGoogle Scholar

  • [37] Rorat, T., Grygorowicz, W.J., Irzykowski, W. and Rey, P. Expression of KS-type dehydrins is primarily regulated by factors related to organ type and leaf developmental stage under vegetative growth. Planta 218 (2004) 878–885. http://dx.doi.org/10.1007/s00425-003-1171-8CrossrefGoogle Scholar

  • [38] Rorat, T., Szabala, B.M., Grygorowicz, W.J., Wojtowicz, B., Yin, Z. and Rey, P. Expression of SK3-type dehydrin in transporting organs is associated with cold acclimation in Solanum species. Planta 224 (2006) 205–221. http://dx.doi.org/10.1007/s00425-005-0200-1CrossrefGoogle Scholar

  • [39] Koag, M-C., Fenton, R.D., Wilken, S. and Close, T.J. The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant. Physiol. 131 (2003) 309–316. http://dx.doi.org/10.1104/pp.011171Google Scholar

  • [40] Krüger, C., Berkowith, O., Stephan, U.W. and Hell, R. A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricuinus communis L. J. Biol. Chem. 277 (2002) 25062–25062. http://dx.doi.org/10.1074/jbc.M201896200CrossrefGoogle Scholar

  • [41] Hara, M., Fujinaga, M. and Kuboi, T. Metal binding by citrus dehydrin with histidine-rich domains. J. Exp. Bot. 56 (2005) 2695–2703. http://dx.doi.org/10.1093/jxb/eri262CrossrefGoogle Scholar

  • [42] Hara, M., Fujinaga, M. and Kuboi, T. Radical scavenging activity and oxidative modification of citrus dehydrin. Plant. Physiol. Biol. 42 (2004) 657–662. http://dx.doi.org/10.1016/j.plaphy.2004.06.004CrossrefGoogle Scholar

  • [43] Hara, M., Terashima, S, Fukaya, T. and Kuboi, T. Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217 (2003) 290–298. Google Scholar

  • [44] Wisniewski, M., Webb, R., Balsamo, R., Close, T.J., Yu, X.M. and Griffith, M. Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: A dehydrin from peach (Prunus persica). Physiol. Plant. 105 (1999) 600–608. http://dx.doi.org/10.1034/j.1399-3054.1999.105402.xCrossrefGoogle Scholar

  • [45] Rinne, P.L.H., Kaikuranta, P.L.M., van der Plas, L.H.W. and van der Schoot, C. Dehydrins in cold-acclimated apices of birch (Betula pubescens Ehrh.): production, localization and potential role in rescuing enzyme function during dehydration. Planta 209 (1999) 377–388. http://dx.doi.org/10.1007/s004250050740CrossrefGoogle Scholar

  • [46] Hara, M., Terashima, S. and Kuboi, T. Characterization and cryoprotective activity of cold-responsive dehydrin from Citrus unshiu. J. Plant. Physiol. 158 (2001) 1333–1339. http://dx.doi.org/10.1078/0176-1617-00600CrossrefGoogle Scholar

  • [47] Lang, V. and Palva, E.T. The expression of a RAB-related gene, RAB18, is induced by abscisic-acid during the cold-acclimation process of Arabidopsis thaliana (L) Heynh. Plant Mol. Biol. 20 (1992) 951–962. http://dx.doi.org/10.1007/BF00027165CrossrefGoogle Scholar

  • [48] Karlson, D.T., Fujino, T., Kimura, S., Baba, K., Itoh, T. and Ashworth, E.N. Novel plasmodesmata association of dehydrin-like proteins in cold acclimation red-osier dogwood (Cornus sericea). Tree Physiol. 23 (2003) 759–767. CrossrefGoogle Scholar

  • [49] Schneider, K., Wells, B., Schmelzer, E., Salamini, F. and Bartels, D. Desiccation leads to the rapid accumulation of both cytosolic and chloroplastic proteins in the resurrection plant Craterostigma plantagineum Hochst. Planta 189 (1993) 120–131. http://dx.doi.org/10.1007/BF00201352CrossrefGoogle Scholar

  • [50] Egerton-Warburton, L.M., Balsamo, R.A. and Close, T.J. Temporal accumulation and ultrastructural localization of dehydrins in Zea mays. Physiol. Plant. 101 (1997) 545–555. http://dx.doi.org/10.1111/j.1399-3054.1997.tb01036.xCrossrefGoogle Scholar

  • [51] Borovskii, G.B., Stupnikova, I.V., Antipina, A.I. and Voinikov, V.K. Accumulation of protein, immunochemically related to dehydrins in the mitochondria of cold treated plants. Dokl. Akad. Nauk 371 (2000) 251–254. Google Scholar

  • [52] Heyen, B.J., Alsheikh, M.K., Smith, E.A., Torvik, C.F., Seals, D.F. and Randall, S.K. The calcium-binding activity of a vacuole-associated, dehydrin-like protein is regulated by phosphorylation. Plant Physiol. 130 (2002) 675–687. http://dx.doi.org/10.1104/pp.002550CrossrefGoogle Scholar

  • [53] Asghar, R., Fenton, R.D., Demason, D.A. and Close, T.J. Nuclear and cytoplasmic localization of maize embryo and aleurone dehydrin. Protoplasma 177 (1994) 87–94. http://dx.doi.org/10.1007/BF01378983CrossrefGoogle Scholar

  • [54] Bracale, M., Levi, M., Savini, C., Dicorato, W. and Galli, M.G. Water deficit in pea root tips: Effects on the cell cycle and on the production of dehydrin-like proteins. Ann. Bot. 79 (1997) 593–600. http://dx.doi.org/10.1006/anbo.1996.0356CrossrefGoogle Scholar

  • [55] Jensen, A.B., Goday, A., Figueras, M., Jessop, A.C. and Pages, M. Phosphorylation mediates the nuclear targeting of the maize RAB17 protein. Plant J. 13 (1998) 691–697. http://dx.doi.org/10.1046/j.1365-313X.1998.00069.xCrossrefGoogle Scholar

  • [56] Mundy, J. and Chua, N.H. Abscisic acid and water-stress induce the expression of a novel rice gene. Embo J. 7 (1988) 2279–2286. Google Scholar

  • [57] Neven, L., Haskell, G.D.W., Hofig, A., Li, Q.B. and Guy, C.L. Characterization of a spinach gene responsive to low-temperature and water-stress. Plant Mol. Biol. 21 (1993) 291–305. http://dx.doi.org/10.1007/BF00019945CrossrefGoogle Scholar

  • [58] Vilardell, J., Goday, A., Freire, M.A., Torrent, M., Martinez, M.C., Torne, J. M. and Pages, M. Gene, sequence, developmental regulation and protein phosphorylation of RAB17 in maize. Plant Mol. Biol. 14 (1990) 423–432. http://dx.doi.org/10.1007/BF00028778CrossrefGoogle Scholar

  • [59] Plana, M., Itarte, E., Eritja, R., Goday, A., Pages, M. and Martinez, M.C. Phosphorylation of maize RAB-17 protein by casein kinase-2. J. Biol. Chem. 266 (1991) 22510–22514. Google Scholar

  • [60] Alsheikh, M.K., Heyen, B.J., Randall, S.K. Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation. J. Biol. Chem. 278 (2003) 40882–40889. http://dx.doi.org/10.1074/jbc.M307151200CrossrefGoogle Scholar

  • [61] Golan-Goldhirsh, A., Peri, I., Birk, Y. and Smirnoff, P. Inflorescence bud proteins of Pistacia vera. Trees-Struct. Funct. 12 (1998) 415–419. Google Scholar

  • [62] Levi, A., Panta, G.R., Parmentier, C.M., Muthalif, M.M. Arora, R., Shanker, S. and Rowland, L.J. Complementary DNA cloning, sequencing and expression of an unusual dehydrin from blueberry floral buds. Physiol. Plant. 107 (1999) 98–109. http://dx.doi.org/10.1034/j.1399-3054.1999.100114.xCrossrefGoogle Scholar

  • [63] Sarhan, F., Oullet, F. and Vazquez-Tello, A. The wheat wcs120 gene family: a useful model to understand the molecular genetics of freezing tolerance in cereals. Physiol. Plant. 101 (1997) 439–445. http://dx.doi.org/10.1111/j.1399-3054.1997.tb01019.xGoogle Scholar

  • [64] Ismail, A.M., Hall, A.E. and Close, T.J. Allelic variation of a dehydrin gene cosegregates with chilling tolerance during seedling emergence. Proc. Natl. Acad. Sci. U. S. A. 96 (1999b) 13566–13570. http://dx.doi.org/10.1073/pnas.96.23.13566CrossrefGoogle Scholar

  • [65] Whitsitt, M.S., Collins, R.G. and Mullet, J.E. Modulation of dehydration tolerance in soybean seedlings. Plant Physiol. 114 (1997) 917–925. Google Scholar

  • [66] Cellier, F., Conéjéro, G., Breitler, J-C. and Casse, F. Molecular and physiological responses to water deficit in drought-tolerant and drought-sensitive lines of sunflower. Plant Physiol. 116 (1998) 319–328. http://dx.doi.org/10.1104/pp.116.1.319CrossrefGoogle Scholar

  • [67] Ismail, A.M., Hall, A.E. and Close, T.J. Chilling tolerance during emergence of cowpea associate with a dehydrin and slow electrolyte leakage. Crop Sci. 37 (1997) 1270–1277. http://dx.doi.org/10.2135/cropsci1997.0011183X003700040041xCrossrefGoogle Scholar

  • [68] Tabaei-Aghdaei, S.R., Harrison, P. and Pearce, R.S. Expression of dehydratio-stress-related genes in the crowns of wheatgresses species [Lophopyrum elongatum (Host) A. Love and Agropyron desertorum (Fisch. Ex Link.) Schult. having contrasting acclimation to salt, cold and drought. Plant Cell Environ. 23 (2000) 561–571. http://dx.doi.org/10.1046/j.1365-3040.2000.00572.xCrossrefGoogle Scholar

  • [69] Zhu, B., Choi, D.W., Fenton, R. and Close, T.J. Expression of the barley dehydrin multigene family and the development of freezing tolerance. Mol. Gen. Genet. 264 (2000) 145–153. http://dx.doi.org/10.1007/s004380000299CrossrefGoogle Scholar

  • [70] Kaye, C., Neven, L., Hofig, A., Li, Q.B., Haskell, D. and Guy, C. Characterization of a gene for spinach CAP160 and expression of two spinach cold-acclimation proteins in tobacco. Plant Physiol. 116 (1998) 1367–1377. http://dx.doi.org/10.1104/pp.116.4.1367CrossrefGoogle Scholar

  • [71] Frank, W., Munnik, T., Kerkmann K., Salamini F. and Bartels D. Water deficit triggers phospholipase D activity in the resurrection plant Craterostigma plantagineum. Plant Cell 12 (2000) 111–123. http://dx.doi.org/10.1105/tpc.12.1.111CrossrefGoogle Scholar

  • [72] Munnik, T. Phosphatidic acid: an emerging plant lipid second messenger. Trends Plant Sci. 6 (2001) 227–233. http://dx.doi.org/10.1016/S1360-1385(01)01918-5CrossrefGoogle Scholar

  • [73] Cullis, P.R., Hope, M.J. and Tilcock C.P.S. Lipid polymorphism and the roles of lipids in membranes. Chem. Phys. Lipids 40 (1986) 127–144 http://dx.doi.org/10.1016/0009-3084(86)90067-8CrossrefGoogle Scholar

  • [74] Pearce, R.S. Extracellular ice and cell shape in frost-stressed cereals leaves: a low temperature scanning-electron microscopy study. Planta 175 (1988) 313–324. http://dx.doi.org/10.1007/BF00396336CrossrefGoogle Scholar

  • [75] Pearce, R.S. and Ashworth E.N. Cell shape and localization of ice in leaves of overwintering wheat during frost stress in the field. Planta 188 (1992) 324–331. http://dx.doi.org/10.1007/BF00192798CrossrefGoogle Scholar

  • [76] Welin, B.V., Olson, A., Nylander, M. and Palva, E.T. characterization and differential expression of DHN/LEA/RAB-like genes during cold-acclimation and drought stress in Arabidopsis thaliana. Plant Mol. Biol. 26 (1994) 131–144. http://dx.doi.org/10.1007/BF00039526CrossrefGoogle Scholar

  • [77] Houde, M., Danyluk, J., Laliberte, J.F., Rassart, E., Dhindsa, R.S. and Sarhan, F. Cloning, characterization, and expression of a cDNA encoding a 50-kilodalton protein specifically induced by cold-acclimation in wheat. Plant Physiol. 99 (1992) 1381–1387. http://dx.doi.org/10.1104/pp.99.4.1381CrossrefGoogle Scholar

About the article

Published Online: 2006-09-14

Published in Print: 2006-12-01


Citation Information: Cellular and Molecular Biology Letters, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-006-0044-0.

Export Citation

© 2006 University of Wrocław, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Yang Liu, Li Wang, Tianpeng Zhang, Xinghong Yang, and Dequan Li
Scientific Reports, 2017, Volume 7, Number 1
[3]
[4]
[5]
Aimin Lv, Nana Fan, Jianping Xie, Shili Yuan, Yuan An, and Peng Zhou
Frontiers in Plant Science, 2017, Volume 8
[6]
Raha Abedini, Farzan GhaneGolmohammadi, Reihaneh PishkamRad, Ehsan Pourabed, Ahad Jafarnezhad, Zahra-Sadat Shobbar, and Maryam Shahbazi
Journal of Plant Research, 2017, Volume 130, Number 4, Page 747
[8]
Chukwuma C. Ogbaga, Piotr Stepien, Beth C. Dyson, Nicholas J. W. Rattray, David I. Ellis, Royston Goodacre, Giles N. Johnson, and Jin-Song Zhang
PLOS ONE, 2016, Volume 11, Number 5, Page e0154423
[9]
Kalpalatha Melmaiee, Michael Anderson, Sathya Elavarthi, Arron Guenzi, Patricia Canaan, and Silvia Mazzuca
PLOS ONE, 2015, Volume 10, Number 9, Page e0136433
[10]
Akanksha Sharma, Dilip Kumar, Sumit Kumar, Sakshi Rampuria, Attipalli R. Reddy, Pulugurtha Bharadwaja Kirti, and Belay T. Ayele
PLOS ONE, 2016, Volume 11, Number 3, Page e0150609
[11]
Yevgen Zolotarov, Martina Strömvik, and Haibing Yang
PLOS ONE, 2015, Volume 10, Number 6, Page e0129016
[12]
Fei Bao, Dongliang Du, Yang An, Weiru Yang, Jia Wang, Tangren Cheng, and Qixiang Zhang
Frontiers in Plant Science, 2017, Volume 8
[13]
Shi-Weng Li, Rui-Fang Shi, Yan Leng, and Turgay Unver
PLOS ONE, 2015, Volume 10, Number 7, Page e0132969
[14]
Gurmeen Rakhra, Tarandeep Kaur, Dhiraj Vyas, Arun Dev Sharma, Jatinder Singh, and Gobind Ram
Plant Physiology and Biochemistry, 2017, Volume 112, Page 29
[15]
Hua Jing, Chao Li, Fang Ma, Ji-Hui Ma, Abid Khan, Xiao Wang, Li-Yang Zhao, Zhen-Hui Gong, Ru-Gang Chen, and Haitao Shi
PLOS ONE, 2016, Volume 11, Number 8, Page e0161073
[16]
Marwa Drira, Moez Hanin, Khaled Masmoudi, and Fai�al Brini
Functional Plant Biology, 2016, Volume 43, Number 11, Page 1048
[17]
Lixiang Cheng, Yuping Wang, Qiang He, Huijun Li, Xiaojing Zhang, and Feng Zhang
BMC Plant Biology, 2016, Volume 16, Number 1
[18]
LUCIE MELIŠOVÁ, LUDMILA HOLKOVÁ, and MARTA BRADÁČOVÁ
Kvasny Prumysl, 2011, Volume 57, Number 7, Page 190
[19]
Anuj Kumar, Sanjay Kumar, Upendra Kumar, Prashanth Suravajhala, and M.N.V. Prasad Gajula
Computational Biology and Chemistry, 2016, Volume 64, Page 217
[20]
Yang Liu, Jianan Liang, Liping Sun, Xinghong Yang, and Dequan Li
Frontiers in Plant Science, 2016, Volume 07
[21]
Himanshu Tak, Sanjana Negi, and T. R Ganapathi
Protoplasma, 2017, Volume 254, Number 2, Page 803
[22]
Paula Aguayo, Javiera Sanhueza, Felipe Noriega, Margaret Ochoa, Regis Lefeuvre, Darío Navarrete, Marta Fernández, and Sofía Valenzuela
Trees, 2016, Volume 30, Number 5, Page 1785
[23]
William Hill, Xiao-Lu Jin, and Xing-Hai Zhang
Plant Growth Regulation, 2016, Volume 80, Number 3, Page 323
[24]
Annick Bertrand, Marie Bipfubusa, Yves Castonguay, Solen Rocher, Aleksandra Szopinska-Morawska, Yousef Papadopoulos, and Jenny Renaut
BMC Plant Biology, 2016, Volume 16, Number 1
[25]
Yasemin Celik Altunoglu, Pinar Baloglu, Esra Nurten Yer, Sefa Pekol, and Mehmet Cengiz Baloglu
Plant Growth Regulation, 2016, Volume 80, Number 2, Page 225
[26]
Masakazu Hara, Shuhei Monna, Takae Murata, Taiyo Nakano, Shono Amano, Markus Nachbar, and Hermann Wätzig
Plant Science, 2016, Volume 245, Page 135
[28]
G. Richard Strimbeck, Paul G. Schaberg, Carl G. Fossdal, Wolfgang P. Schröder, and Trygve D. Kjellsen
Frontiers in Plant Science, 2015, Volume 6
[29]
Sayed Hussain, Qingfeng Niu, Minjie Qian, Songling Bai, and Yuanwen Teng
Tree Genetics & Genomes, 2015, Volume 11, Number 5
[30]
Ru-gang Chen, Hua Jing, Wei-li Guo, Shu-Bin Wang, Fang Ma, Bao-Gui Pan, and Zhen-Hui Gong
Plant Cell Reports, 2015, Volume 34, Number 12, Page 2189
[31]
Itzell E. Hernández-Sánchez, Israel Maruri-López, Alejandro Ferrando, Juan Carbonell, Steffen P. Graether, and Juan F. Jiménez-Bremont
Frontiers in Plant Science, 2015, Volume 6
[32]
Jorge Gallardo-Cerda, L.A. Bravo, C. Atala, G. Vergara-Quezada, L.J. Corcuera, and M.A. Molina-Montenegro
South African Journal of Botany, 2016, Volume 102, Page 240
[33]
Mohamed Magdy F. Mansour, Karima H. A. Salama, and Hasan Y. H. Allam
The Botanical Review, 2015, Volume 81, Number 4, Page 416
[34]
Pedro Perdiguero, Álvaro Soto, and Carmen Collada
Tree Genetics & Genomes, 2015, Volume 11, Number 4
[36]
Tomasz L. Mróz, Agnieszka Ziółkowska, Piotr Gawroński, Ewelina Pióro-Jabrucka, Sylwia Kacprzak, Magdalena Mazur, Stefan Malepszy, Grzegorz Bartoszewski, and T. Debener
Plant Breeding, 2015, Volume 134, Number 4, Page 468
[37]
Vítor da Silveira Falavigna, Yohanna Evelyn Miotto, Diogo Denardi Porto, Rafael Anzanello, Henrique Pessoa dos Santos, Flávio Bello Fialho, Márcia Margis-Pinheiro, Giancarlo Pasquali, and Luís Fernando Revers
Physiologia Plantarum, 2015, Volume 155, Number 3, Page 315
[38]
K. B. Ruiz, S. Biondi, E. A. Martínez, F. Orsini, F. Antognoni, and S.-E. Jacobsen
Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 2016, Volume 150, Number 2, Page 357
[39]
Natalia Korotaeva, Anatolii Romanenko, Galina Suvorova, Maria V. Ivanova, Lidia Lomovatskaya, Gennadii Borovskii, and Victor Voinikov
Photosynthesis Research, 2015, Volume 124, Number 2, Page 159
[40]
JAVIER SÁNCHEZ-MARTÍN, JIM HEALD, ALISON KINGSTON-SMITH, ANA WINTERS, DIEGO RUBIALES, MARILUZ SANZ, LUIS A. J. MUR, and ELENA PRATS
Plant, Cell & Environment, 2015, Volume 38, Number 7, Page 1434
[41]
Sisi Liu, Zhuanfang Hao, Jianfeng Weng, Mingshun Li, Degui Zhang, Guangtang Pan, Shihuang Zhang, and Xinhai Li
Molecular Breeding, 2015, Volume 35, Number 1
[42]
Marta Fernández, Valentina Troncoso, and Sofia Valenzuela
Plant Molecular Biology Reporter, 2015, Volume 33, Number 5, Page 1472
[43]
Nicola La Porta, Gaurav Sablok, Giovanni Emilliani, Ari M. Hietala, Alessio Giovannelli, Paolo Fontana, Emilio Potenza, and Paolo Baldi
Molecular Biotechnology, 2015, Volume 57, Number 5, Page 407
[44]
Manu Kumar, Sang-Choon Lee, Ji-Youn Kim, Soo-Jin Kim, San San Aye, and Seong-Ryong Kim
Journal of Plant Biology, 2014, Volume 57, Number 6, Page 383
[45]
Pavithra A Jyothi-Prakash, Bijayalaxmi Mohanty, Edward Wijaya, Tit-Meng Lim, Qingsong Lin, Chiang-Shiong Loh, and Prakash P Kumar
BMC Plant Biology, 2014, Volume 14, Number 1
[46]
K. Kosová, P. Vítámvás, I. Hlaváčková, M. O. Urban, E. Vlasáková, and I. T. Prášil
Biologia Plantarum, 2015, Volume 59, Number 1, Page 106
[47]
Cesar L. Cuevas-Velazquez, David F. Rendón-Luna, and Alejandra A. Covarrubias
Frontiers in Plant Science, 2014, Volume 5
[48]
Angelica Lindlöf
Plant Signaling & Behavior, 2010, Volume 5, Number 7, Page 820
[49]
Moez Hanin, Faïçal Brini, Chantal Ebel, Yosuke Toda, Shin Takeda, and Khaled Masmoudi
Plant Signaling & Behavior, 2011, Volume 6, Number 10, Page 1503
[50]
Denes Kovacs, Bianka Agoston, and Peter Tompa
Plant Signaling & Behavior, 2008, Volume 3, Number 9, Page 710
[52]
Ewa Marzena Kalemba, Agnieszka Bagniewska-Zadworna, and Ewelina Ratajczak
Journal of Plant Growth Regulation, 2015, Volume 34, Number 1, Page 137
[53]
Po-Hsin Peng, Chia-Hui Lin, Hui-Wen Tsai, and Tsai-Yun Lin
Plant and Cell Physiology, 2014, Volume 55, Number 9, Page 1623
[54]
A. Radwan, M. Hara, M. Kleinwächter, D. Selmar, and E. Flemetakis
Plant Biology, 2014, Volume 16, Number 5, Page 853
[55]
Klára Kosová, Pavel Vítámvás, and Ilja T. Prášil
Frontiers in Plant Science, 2014, Volume 5
[56]
Xinchao Wang, Xinyuan Hao, Chunlei Ma, Hongli Cao, Chuan Yue, Lu Wang, Jianming Zeng, and Yajun Yang
Tree Genetics & Genomes, 2014, Volume 10, Number 5, Page 1149
[57]
Jie Liu, Xiao Xu, Qian Xu, Shuhui Wang, and Jichen Xu
Plant Cell, Tissue and Organ Culture (PCTOC), 2014, Volume 118, Number 3, Page 391
[58]
Masakazu Hara, Saki Uchida, Takae Murata, and Hermann Wätzig
European Food Research and Technology, 2014, Volume 239, Number 2, Page 339
[59]
Rob C.A. Keller
International Journal of Molecular Sciences, 2011, Volume 12, Number 12, Page 5577
[60]
Bingru Huang, Michelle DaCosta, and Yiwei Jiang
Critical Reviews in Plant Sciences, 2014, Volume 33, Number 2-3, Page 141
[61]
Eiji Okuma, Rieko Nozawa, Yoshiyuki Murata, and Kenji Miura
Plant Signaling & Behavior, 2014, Volume 9, Number 3, Page e28085
[62]
Rafaela Ribeiro Reis, Bárbara Andrade Dias Brito da Cunha, Polyana Kelly Martins, Maria Thereza Bazzo Martins, Jean Carlos Alekcevetch, Antônio Chalfun-Júnior, Alan Carvalho Andrade, Ana Paula Ribeiro, Feng Qin, Junya Mizoi, Kazuko Yamaguchi-Shinozaki, Kazuo Nakashima, Josirley de Fátima Corrêa Carvalho, Carlos Antônio Ferreira de Sousa, Alexandre Lima Nepomuceno, Adilson Kenji Kobayashi, and Hugo Bruno Correa Molinari
Plant Science, 2014, Volume 221-222, Page 59
[63]
Bartosz Mieczyslaw Szabala, Sylwia Fudali, and Tadeusz Rorat
Planta, 2014, Volume 239, Number 4, Page 847
[64]
Weining Zhu, Linsheng Zhang, Hui Lv, Hongmei Zhang, Dapeng Zhang, Xiaoyu Wang, and Juan Chen
Functional & Integrative Genomics, 2014, Volume 14, Number 1, Page 111
[65]
Kentaro Sasaki, Nikolai Kirilov Christov, Sakae Tsuda, and Ryozo Imai
Plant and Cell Physiology, 2014, Volume 55, Number 1, Page 136
[66]
T. D. Kjellsen, I. A. Yakovlev, C. G. Fossdal, and G. R. Strimbeck
Tree Physiology, 2013, Volume 33, Number 12, Page 1354
[67]
Nemat M. Hassan, Zeinab M. El-Bastawisy, Ahamed K. El-Sayed, Heba T. Ebeed, and Mamdouh M. Nemat Alla
Journal of Advanced Research, 2015, Volume 6, Number 2, Page 179
[68]
Weining Zhu, Dapeng Zhang, Xuanxuan Lu, Linsheng Zhang, Zhengyang Yu, Hui Lv, and Hongmei Zhang
Plant Molecular Biology Reporter, 2014, Volume 32, Number 3, Page 664
[69]
Tomohiro Imamura, Atsumi Higuchi, and Hideyuki Takahashi
Plant Science, 2013, Volume 213, Page 55
[71]
Quentin Kaas and David J. Craik
Progress in Nuclear Magnetic Resonance Spectroscopy, 2013, Volume 71, Page 1
[72]
Mary E Mason, Jennifer L Koch, Marek Krasowski, and Judy Loo
Proteome Science, 2013, Volume 11, Number 1, Page 2
[73]
Masakazu Hara, Mitsuru Kondo, and Takanari Kato
Journal of Experimental Botany, 2013, Volume 64, Number 6, Page 1615
[74]
Il-Sup Kim, Hyun-Young Kim, Young-Saeng Kim, Han-Gu Choi, Sung-Ho Kang, and Ho-Sung Yoon
Applied Microbiology and Biotechnology, 2013, Volume 97, Number 20, Page 8997
[76]
Francine Lunardi Farias-Soares, Hernán Pablo Burrieza, Neusa Steiner, Sara Maldonado, and Miguel Pedro Guerra
Protoplasma, 2013, Volume 250, Number 4, Page 911
[77]
Daixi Li, Baolin Liu, Baisong Guo, Fei Xu, Chunsheng Yang, Chenglung Chen, Yan Zhang, and Zhen Zhai
Molecular Simulation, 2013, Volume 39, Number 2, Page 160
[78]
Marie-Pier Dubé, Yves Castonguay, Jean Cloutier, Josée Michaud, and Annick Bertrand
Theoretical and Applied Genetics, 2013, Volume 126, Number 3, Page 823
[79]
KETING CHEN, JENNY RENAUT, KJELL SERGEANT, HUI WEI, and RAJEEV ARORA
Plant, Cell & Environment, 2013, Volume 36, Number 4, Page 892
[81]
Aaron A. Santner, Carrie H. Croy, Farha H. Vasanwala, Vladimir N. Uversky, Ya-Yue J. Van, and A. Keith Dunker
Biochemistry, 2012, Volume 51, Number 37, Page 7250
[82]
Pedro Perdiguero, M. Carmen Barbero, M. Teresa Cervera, Álvaro Soto, and Carmen Collada
Planta, 2012, Volume 236, Number 6, Page 1863
[83]
Hernán Pablo Burrieza, María Paula López-Fernández, Tatiana Barroso Chiquieri, Vanildo Silveira, and Sara Maldonado
Plant Cell Reports, 2012, Volume 31, Number 12, Page 2139
[84]
Verena Isabelle Adolf, Sven-Erik Jacobsen, and Sergey Shabala
Environmental and Experimental Botany, 2013, Volume 92, Page 43
[85]
P. M. Barros, N. Goncalves, N. J. M. Saibo, and M. M. Oliveira
Tree Physiology, 2012, Volume 32, Number 9, Page 1113
[86]
Shannon K. Dillon, Jeremy T. Brawner, Roger Meder, David J. Lee, and Simon G. Southerton
New Phytologist, 2012, Volume 195, Number 3, Page 596
[87]
Carolina Gimiliani Lembke, Milton Yutaka Nishiyama, Paloma Mieko Sato, Rodrigo Fandiño de Andrade, and Glaucia Mendes Souza
Plant Molecular Biology, 2012, Volume 79, Number 4-5, Page 461
[88]
Dirk Wartenberg, Martin Vödisch, Olaf Kniemeyer, Daniela Albrecht-Eckardt, Kirstin Scherlach, Robert Winkler, Mirko Weide, and Axel A. Brakhage
Journal of Proteomics, 2012, Volume 75, Number 13, Page 4038
[89]
Zujun Yang, Tao Zhang, Guangrong Li, and Eviatar Nevo
Genetica, 2011, Volume 139, Number 11-12, Page 1429
[90]
Alexandra M. Livernois, Daniel J. Hnatchuk, Emma E. Findlater, and Steffen P. Graether
Analytical Biochemistry, 2009, Volume 392, Number 1, Page 70
[91]
Chia-Hui Lin, Po-Hsin Peng, Chia-Yun Ko, Albert H. Markhart, and Tsai-Yun Lin
Plant and Cell Physiology, 2012, Volume 53, Number 5, Page 930
[92]
V. E. Sofronova, T. Chr. Maximov, N. E. Korotaeva, G. G. Suvorova, M. V. Oskorbina, and G. B. Borovskii
Doklady Biological Sciences, 2012, Volume 443, Number 1, Page 113
[93]
Hernán P. Burrieza, Hans-Werner Koyro, Leandro Martínez Tosar, Ken Kobayashi, and Sara Maldonado
Plant and Soil, 2012, Volume 354, Number 1-2, Page 69
[94]
K. Kosová, P. Vítámvás, P. Prášilová, and I. T. Prášil
Biologia Plantarum, 2013, Volume 57, Number 1, Page 105
[95]
K. Chen and R. Arora
Environmental and Experimental Botany, 2013, Volume 94, Page 33
[96]
V. Vassileva, K. Demirevska, L. Simova-Stoilova, T. Petrova, N. Tsenov, and U. Feller
Journal of Agronomy and Crop Science, 2012, Volume 198, Number 2, Page 104
[97]
Joanne Wong Sak Hoi, Rémi Beau, and Jean-Paul Latgé
Fungal Genetics and Biology, 2012, Volume 49, Number 3, Page 210
[98]
Trygve D. Kjellsen, Liudmila Shiryaeva, Wolfgang P. Schröder, and G. Richard Strimbeck
Journal of Proteomics, 2010, Volume 73, Number 5, Page 965
[99]
Xiao-feng DENG, Feng-ling FU, Na NI, and Wan-chen LI
Agricultural Sciences in China, 2009, Volume 8, Number 7, Page 767
[100]
A. E. Ochoa-Alfaro, M. Rodríguez-Kessler, M. B. Pérez-Morales, P. Delgado-Sánchez, C. L. Cuevas-Velazquez, G. Gómez-Anduro, and J. F. Jiménez-Bremont
Planta, 2012, Volume 235, Number 3, Page 565
[101]
Yves Castonguay, Marie-Pier Dubé, Jean Cloutier, Réal Michaud, Annick Bertrand, and Serge Laberge
Theoretical and Applied Genetics, 2012, Volume 124, Number 5, Page 809
[103]
Nancy L. Pruitt, Nasheed Moqueet, and Craig A. Shapiro
Cryobiology, 2007, Volume 54, Number 1, Page 125
[104]
Dong-Gi Lee, Nagib Ahsan, Sang-Hoon Lee, Kyu Young Kang, Jeung Joo Lee, and Byung-Hyun Lee
Comptes Rendus Biologies, 2007, Volume 330, Number 3, Page 215
[105]
Chang-Cai Liu, Chun-Ming Li, Bao-Guang Liu, Su-Jie Ge, Xiu-Mei Dong, Wei Li, Hang-Yong Zhu, Bai-Chen Wang, and Chuan-Ping Yang
Plant Molecular Biology Reporter, 2012, Volume 30, Number 4, Page 848
[106]
Gang Wang, Qingguo Zhu, Qingwei Meng, and Changai Wu
Acta Physiologiae Plantarum, 2012, Volume 34, Number 1, Page 107
[108]
Ewa Marzena Kalemba and Stanisława Pukacka
Journal of Plant Growth Regulation, 2012, Volume 31, Number 3, Page 351
[109]
Lin Cong, Hong-Chun Zheng, Yu-Xiu Zhang, and Tuan-Yao Chai
Plant Science, 2008, Volume 174, Number 2, Page 156
[110]
Peiqiang Mu, Dongru Feng, Jianbin Su, Yang Zhang, Jinran Dai, Honglei Jin, Bing Liu, Yanming He, Kangbiao Qi, Hongbin Wang, and Jinfa Wang
The Journal of Biochemistry, 2011, Volume 150, Number 5, Page 491
[111]
Upendra K. Singh Shekhawat, Lingam Srinivas, and Thumballi R. Ganapathi
Planta, 2011, Volume 234, Number 5, Page 915
[112]
Masakazu Hara, Yuri Shinoda, Masayuki Kubo, Daiju Kashima, Ikuo Takahashi, Takanari Kato, Tokumasa Horiike, and Toru Kuboi
Acta Physiologiae Plantarum, 2011, Volume 33, Number 6, Page 2103
[113]
B. Vornam, O. Gailing, J. Derory, C. Plomion, A. Kremer, and R. Finkeldey
Plant Biology, 2011, Volume 13, Number 6, Page 881
[114]
Klára Kosová, Ludmila Holková, Ilja Tom Prášil, Pavla Prášilová, Marta Bradáčová, Pavel Vítámvás, and Věra Čapková
Journal of Plant Physiology, 2008, Volume 165, Number 11, Page 1142
[115]
Nagib Ahsan, Dong-Gi Lee, Ki-Won Lee, Iftekhar Alam, Sang-Hoon Lee, Jeong Dong Bahk, and Byung-Hyun Lee
Plant Physiology and Biochemistry, 2008, Volume 46, Number 12, Page 1062
[116]
Longxing Hu, Zhaolong Wang, Hongmei Du, and Bingru Huang
Journal of Plant Physiology, 2010, Volume 167, Number 2, Page 103
[117]
Oscar Goñi, María T. Sanchez-Ballesta, Carmen Merodio, and María I. Escribano
Journal of Plant Physiology, 2010, Volume 167, Number 14, Page 1119
[118]
Małgorzata Garnczarska, Tomasz Zalewski, and Łukasz Wojtyla
Journal of Plant Physiology, 2008, Volume 165, Number 18, Page 1940
[119]
Jesús Ángel Jiménez, Ana Alonso-Ramírez, and Carlos Nicolás
Journal of Plant Physiology, 2008, Volume 165, Number 17, Page 1798
[120]
Klára Kosová, Ilja Tom Prášil, Pavla Prášilová, Pavel Vítámvás, and Jana Chrpová
Journal of Plant Physiology, 2010, Volume 167, Number 5, Page 343
[121]
Constantinos Prassinos, Stamatis Rigas, Dimosthenis Kizis, Antonia Vlahou, and Polydefkis Hatzopoulos
Journal of Proteomics, 2011, Volume 74, Number 5, Page 607
[122]
Klára Kosová, Pavel Vítámvás, and Ilja Tom Prášil
Plant Science, 2011, Volume 180, Number 1, Page 46
[123]
Xin Xing, Yukun Liu, Xiangpei Kong, Yang Liu, and Dequan Li
Plant Growth Regulation, 2011, Volume 65, Number 1, Page 109
[124]
Bianka Szalainé Ágoston, Dénes Kovács, Péter Tompa, and András Perczel
Biomolecular NMR Assignments, 2011, Volume 5, Number 2, Page 189
[125]
Ewa M. Kalemba and Stanisława Pukacka
Environmental and Experimental Botany, 2008, Volume 63, Number 1-3, Page 274
[126]
K. Vijayan, P.P. Srivastava, M.K. Raghunath, and B. Saratchandra
Scientia Horticulturae, 2011, Volume 129, Number 4, Page 511
[127]
Michaela Hundertmark, Julia Buitink, Olivier Leprince, and Dirk K. Hincha
Seed Science Research, 2011, Volume 21, Number 03, Page 165
[128]
Sylvain Legay, Isabelle Lefèvre, Didier Lamoureux, Carolina Barreda, Rosalina Tincopa Luz, Raymundo Gutierrez, Roberto Quiroz, Lucien Hoffmann, Jean-François Hausman, Merideth Bonierbale, Danièle Evers, and Roland Schafleitner
Functional & Integrative Genomics, 2011, Volume 11, Number 2, Page 275
[129]
Keiichi Mochida, Yukiko Uehara-Yamaguchi, Takuhiro Yoshida, Tetsuya Sakurai, and Kazuo Shinozaki
Plant and Cell Physiology, 2011, Volume 52, Number 5, Page 785
[130]
Tiago S. Balbuena, Joaquín J. Salas, Enrique Martínez-Force, Rafael Garcés, and Jay J. Thelen
Journal of Proteome Research, 2011, Volume 10, Number 5, Page 2330
[131]
F. Brini, A. Yamamoto, L. Jlaiel, S. Takeda, T. Hobo, H. Q. Dinh, T. Hattori, K. Masmoudi, and M. Hanin
Plant and Cell Physiology, 2011, Volume 52, Number 4, Page 676
[132]
N. A. Gumilevskaya and M. I. Azarkovich
Russian Journal of Plant Physiology, 2010, Volume 57, Number 6, Page 859
[133]
Jun-Bo Du, Shu Yuan, Yang-Er Chen, Xin Sun, Zhong-Wei Zhang, Fei Xu, Ming Yuan, Jing Shang, and Hong-Hui Lin
Acta Physiologiae Plantarum, 2011, Volume 33, Number 2, Page 567
[134]
Paolo Baldi, Luca Pedron, Ari M. Hietala, and Nicola La Porta
Tree Genetics & Genomes, 2011, Volume 7, Number 1, Page 79
[135]
Sarah Morran, Omid Eini, Tatiana Pyvovarenko, Boris Parent, Rohan Singh, Ainur Ismagul, Serik Eliby, Neil Shirley, Peter Langridge, and Sergiy Lopato
Plant Biotechnology Journal, 2011, Volume 9, Number 2, Page 230
[136]
Stephanie Hughes and Steffen P. Graether
Protein Science, 2011, Volume 20, Number 1, Page 42
[138]
A. S. Romanenko, G. B. Borovskii, I. V. Ukolova, and L. A. Lomovatskaya
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2010, Volume 4, Number 2, Page 162
[139]
Flora AbdulRahman Ismail, Lisette M. C. Nitsch, Mieke M. C. Wolters-Arts, Celestina Mariani, and Jan W. M. Derksen
Sexual Plant Reproduction, 2010, Volume 23, Number 2, Page 95
[140]
Eun-Sook Chung, Chang-Woo Cho, Kyoung-Mi Kim, and Jai-Heon Lee
Journal of Plant Biotechnology, 2009, Volume 36, Number 1, Page 38
[141]
Leila Heidarvand and Reza Maali Amiri
Acta Physiologiae Plantarum, 2010, Volume 32, Number 3, Page 419
[142]
Wilfried Rémus-Borel, Yves Castonguay, Jean Cloutier, Réal Michaud, Annick Bertrand, Réjean Desgagnés, and Serge Laberge
Theoretical and Applied Genetics, 2010, Volume 120, Number 6, Page 1163
[143]
Sylvain Legay, Didier Lamoureux, Jean-François Hausman, Lucien Hoffmann, and Danièle Evers
Plant Cell Reports, 2009, Volume 28, Number 12, Page 1799
[144]
Emma E. Findlater and Steffen P. Graether
Biomolecular NMR Assignments, 2009, Volume 3, Number 2, Page 273
[145]
[146]
Dominique Mingeot, Nicolas Dauchot, Pierre Van Cutsem, and Bernard Watillon
Molecular Biology Reports, 2009, Volume 36, Number 7, Page 1995
[147]
Vanda Šunderlíková, Ján Salaj, Dieter Kopecky, Terézia Salaj, Eva Wilhem, and Ildikó Matušíková
Plant Cell Reports, 2009, Volume 28, Number 7, Page 1011
[148]
MASAKAZU HARA, YURI SHINODA, YASUTAKA TANAKA, and TORU KUBOI
Plant, Cell & Environment, 2009, Volume 32, Number 5, Page 532
[149]
G. Jyothsnakumari, M. Thippeswamy, G. Veeranagamallaiah, and C. Sudhakar
Biologia Plantarum, 2009, Volume 53, Number 1, Page 145
[150]
Ewa M. Kalemba, Franciszek Janowiak, and Stanisława Pukacka
Trees, 2009, Volume 23, Number 2, Page 305
[151]
Jin Xu, Yu Xiu Zhang, Wei Wei, Lu Han, Zi Qiu Guan, Zi Wang, and Tuan Yao Chai
Molecular Biotechnology, 2008, Volume 38, Number 2, Page 91
[152]
Paramjit Khurana, Dalia Vishnudasan, and Anju K. Chhibbar
Physiology and Molecular Biology of Plants, 2008, Volume 14, Number 4, Page 277
[153]
Anita Zamboni, Leone Minoia, Alberto Ferrarini, Giovanni Battista Tornielli, Elisa Zago, Massimo Delledonne, and Mario Pezzotti
Journal of Experimental Botany, 2008, Volume 59, Number 15, Page 4145
[154]
Witold Wachowiak, Peter A. Balk, and Outi Savolainen
Tree Genetics & Genomes, 2009, Volume 5, Number 1, Page 117
[155]
Ragnhild Lyngved, Jenny Renaut, Jean-François Hausman, Tor-Henning Iversen, and Anne Kathrine Hvoslef-Eide
Journal of Plant Growth Regulation, 2008, Volume 27, Number 4, Page 353
[156]
Xin Huang, Tongtong Xue, Silan Dai, Shupeng Gai, Chengchao Zheng, and Guosheng Zheng
Acta Physiologiae Plantarum, 2008, Volume 30, Number 6, Page 797
[157]
P. Carjuzaa, M. Castellión, A. J. Distéfano, M. del Vas, and S. Maldonado
Protoplasma, 2008, Volume 233, Number 1-2, Page 149
[158]
Igor A. Yakovlev, Daniel K. A. Asante, Carl Gunnar Fossdal, Jouni Partanen, Olavi Junttila, and Øystein Johnsen
Planta, 2008, Volume 228, Number 3, Page 459
[159]
S C González-Martínez, D Huber, E Ersoz, J M Davis, and D B Neale
Heredity, 2008, Volume 101, Number 1, Page 19
[160]
Xiaoqiu Du, Qiying Xiao, Ran Zhao, Feng Wu, Qijiang Xu, Kang Chong, and Zheng Meng
Development Genes and Evolution, 2008, Volume 218, Number 6, Page 281
[161]
[163]
Jin Xu, Yuxiu Zhang, Ziqiu Guan, Wei Wei, Lu Han, and Tuanyao Chai
Molecular Breeding, 2008, Volume 21, Number 4, Page 431
[164]
Roland Schafleitner, Raymundo Gutierrez, Ricardo Espino, Amelie Gaudin, José Pérez, Mariano Martínez, Alejandro Domínguez, Luz Tincopa, Carlos Alvarado, Giannina Numberto, and Merideth Bonierbale
Potato Research, 2007, Volume 50, Number 1, Page 71
[165]

Comments (0)

Please log in or register to comment.
Log in