Jump to ContentJump to Main Navigation
Show Summary Details

Cellular and Molecular Biology Letters

Editor-in-Chief: /


IMPACT FACTOR increased in 2015: 1.753

SCImago Journal Rank (SJR) 2015: 0.788
Source Normalized Impact per Paper (SNIP) 2015: 0.645
Impact per Publication (IPP) 2015: 1.748

Online
ISSN
1689-1392
See all formats and pricing



Select Volume and Issue

Plant dehydrins — Tissue location, structure and function

1Institute of Plant Genetics, PAS, Strzeszyńska 34, 60-479, Poznań, Poland

© 2006 University of Wrocław, Poland. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Cellular and Molecular Biology Letters. Volume 11, Issue 4, Pages 536–556, ISSN (Online) 1689-1392, DOI: https://doi.org/10.2478/s11658-006-0044-0, September 2006

Publication History

Published Online:
2006-09-14

Abstract

Dehydrins (DHNs) are part of a large group of highly hydrophilic proteins known as LEA (Late Embryogenesis Abundant). They were originally identified as group II of the LEA proteins. The distinctive feature of all DHNs is a conserved, lysine-rich 15-amino acid domain, EKKGIMDKIKEKLPG, named the K-segment. It is usually present near the C-terminus. Other typical dehydrin features are: a track of Ser residues (the S-segment); a consensus motif, T/VDEYGNP (the Y-segment), located near the N-terminus; and less conserved regions, usually rich in polar amino acids (the Φ-segments). They do not display a well-defined secondary structure. The number and order of the Y-, S-and K-segments define different DHN sub-classes: YnSKn, YnKn, SKn, Kn and KnS. Dehydrins are distributed in a wide range of organisms including the higher plants, algae, yeast and cyanobacteria. They accumulate late in embryogenesis, and in nearly all the vegetative tissues during normal growth conditions and in response to stress leading to cellular dehydration (e.g. drought, low temperature and salinity). DHNs are localized in different cell compartments, such as the cytosol, nucleus, mitochondria, vacuole, and the vicinity of the plasma membrane; however, they are primarily localized to the cytoplasm and nucleus. The precise function of dehydrins has not been established yet, but in vitro experiments revealed that some DHNs (YSKn-type) bind to lipid vesicles that contain acidic phospholipids, and others (KnS) were shown to bind metals and have the ability to scavenge hydroxyl radicals [Asghar, R. et al. Protoplasma 177 (1994) 87–94], protect lipid membranes against peroxidation or display cryoprotective activity towards freezing-sensitive enzymes. The SKn-and K-type seem to be directly involved in cold acclimation processes. The main question arising from the in vitro findings is whether each DHN structural type could possess a specific function and tissue distribution. Much recent in vitro data clearly indicates that dehydrins belonging to different subclasses exhibit distinct functions.

Keywords: Dehydration stress; Drought; Cold acclimation; Freezing tolerance; LEA proteins; Dehydrin

  • [1] Ingram, J. and Bartels, D. The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47 (1996) 377–403. http://dx.doi.org/10.1146/annurev.arplant.47.1.377 [Crossref]

  • [2] Allagulova, Ch.R., Gilamov, F.R., Shakirova, F.M. and Vakhitov, V.A. The plant dehydrins: structure and functions. Biochemistry (Moscow) 68 (2003) 945–951. http://dx.doi.org/10.1023/A:1026077825584 [Crossref]

  • [3] Garay-Arroyo A., Colmenoro-Florest J.M., Garciarrubio A. and Covarrubias A.A. Highly hydrophilic proteins in prokaryotes and eucaryotes are common during conditions of water deficit. J. Biol. Chem. 275 (2000) 5668–5674. http://dx.doi.org/10.1074/jbc.275.8.5668 [Crossref]

  • [4] Dure, L., Crouch, M., Harada, J., Ho, T.-H.D., Mundy, J., Quatrano, R., Thomas, T. and Sung, Z.R. Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol. Biol. 12 (1989) 475–486. http://dx.doi.org/10.1007/BF00036962 [Crossref]

  • [5] Cuming, A. C. LEA proteins. In Seed Proteins (Shewry, P. R. and Casey, R., Eds.), (1999) pp. 753–780, Kluwer Academic Publishers, Dordrecht.

  • [6] Bray, E. A. Molecular responses to water deficit. Plant Physiol. 103 (1993) 1035–1040

  • [7] Wise, M.J. LEAping to conclusions: a computational reanalysis of late embryogenesis abundant proteins and their possible roles. BMC Bioinform. 4 (2003) 52. http://dx.doi.org/10.1186/1471-2105-4-52 [Crossref]

  • [8] McCubbin, W.D., Kay, C.M. and Lane, B.G. Hydrodynamic and optical properties of the wheat germ Em protein. Can. J. Biochem. Cell Biol. 63 (1985) 803–811. http://dx.doi.org/10.1139/o85-102 [Crossref]

  • [9] DureIII, L. Occurrence of a repeating 11-mer amino acid sequence motif in diverse organisms. Protein Pept. Lett. 8 (2001) 115–122. http://dx.doi.org/10.2174/0929866013409643 [Crossref]

  • [10] Solomon, A., Salomon, R., Paperna, I. and Glazer, I. Desiccation stress of entomopathogenic nematodes induces the accumulation of a novel heat stable product. Parasitology 121 (2000) 409–416. http://dx.doi.org/10.1017/S0031182099006563 [Crossref]

  • [11] Browne, J., Tunnacliffe, A. and Burnell, A. Plant desiccation gene found in a nematode. Nature (London) 416 (2002) 38. http://dx.doi.org/10.1038/416038a [Crossref]

  • [12] Goyal, K., Tisi, L., Basran, A., Browne, J., Burnell, A., Zurdo, J. and Tunnacliffe, A. Transition from natively unfolded to folded state induced by desiccation in an anhydrobiotic nematode protein. J. Biol. Chem. 278 (2003) 12977–12984. http://dx.doi.org/10.1074/jbc.M212007200 [Crossref]

  • [13] Wolkers, W.F., McCready, S., Brandt, W.F., Lindsey, G.G. and Hoekstra, F.A. Isolation and characterization of a D-7 LEA protein that stabilizes glasses in vitro. Biochim. Biophys. Acta 1544 (2001) 196–206.

  • [14] Close, T.J. Dehydrins: A commonality in the response of plants to dehydration and low temperature. Physiol. Plant 100 (1997) 291–296. http://dx.doi.org/10.1111/j.1399-3054.1997.tb04785.x [Crossref]

  • [15] Campbell, S.A. and Close, T.J. Dehydrins: genes, proteins, and association with phenotypic traits. New Phytol. 137 (1997) 61–74. http://dx.doi.org/10.1046/j.1469-8137.1997.00831.x [Crossref]

  • [16] Li, R., Brawley, S.H. and Close, T.J. Dehydrin-like proteins in fucoid algae. Plant Physiol. 114 (1997) 479–479.

  • [17] Mitwisha, L., Brandt, W., McCread, L. and Lindsey, G.G. HSP12 is a LEA-like protein in Saccharomyces cerevisiae. Plant Mol. Biol. 37 (1998) 513–521. http://dx.doi.org/10.1023/A:1005904219201 [Crossref]

  • [18] Davidson, W.S., Jonas, A., Clayton, D.F. and George, J.M. “Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes.” J. Biol. Chem. 273 (1998) 9443–9449. http://dx.doi.org/10.1074/jbc.273.16.9443 [Crossref]

  • [19] Segrest, J.P., Deloof, H., Dohlman, J.G., Brouilette C.G. and Anantharamaiah, G.M. Amphipathic helix motif: classes and properties. Proteins Struct. Funct. Genet. 8 (1990) 103–117. http://dx.doi.org/10.1002/prot.340080202 [Crossref]

  • [20] Close, T.J., Kortt, A.A. and Chandler, P.M. A cDNA-Based Comparison of Dehydration-Induced Proteins (Dehydrins) in Barley and Corn. Plant Mol. Biol. 13 (1989) 95–108. http://dx.doi.org/10.1007/BF00027338 [Crossref]

  • [21] Lisse, T., Bartels, D., Kalbitzer, H.R. and Jaenicke, R. The recombinant dehydrinlike desiccation stress protein from the resurrection plant Craterostigma plantagineum displays no defined three-dimensional structure in its native state. Biol. Chem. 377 (1996) 555–561.

  • [22] Ismail, A.M., Hall, A.E. and Close, T.J. Purification and partial characterization of a dehydrin involved in chilling tolerance during seedling emergence of cowpea. Plant Physiol. 120 (1999a) 237–244. http://dx.doi.org/10.1104/pp.120.1.237 [Crossref]

  • [23] Puhakainen, T., Hess, M.V., Mäkela, P., Svenson, J., Heino, P. and Palva, E.T. Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol. Biol. 54 (2004) 743–753. http://dx.doi.org/10.1023/B:PLAN.0000040903.66496.a4 [Crossref]

  • [24] Choi, D.W., Zhu, B. and Close, T.J. The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv Dicktoo. Theor. Appl. Genet. 98 (1999) 1234–1247. http://dx.doi.org/10.1007/s001220051189 [Crossref]

  • [25] Rodriguez, E.M., Svenson, J.T., Malatrasi, M., Choi, D.-W and Close, T.J. Barley Dhn13 encodes a KS-type dehydrin with constitutive and stress responsive expression. Theor. Appl. Genet. 110 (2005) 852–858. http://dx.doi.org/10.1007/s00122-004-1877-4 [Crossref]

  • [26] Svenson, J., Ismail, A.M., Palva, E.T and Close, T.J. Dehydrins. In: Sensing, Signalling and Cell Adaptation (Storey, K.B. and Storey, J.M. Eds.), Elsevier Science B.V. (2002) 155–171.

  • [27] Goday, A., Jensen, A.B., Culianezmacia, F.A., Alba, M.M., Figueras, M., Serratosa, J., Torrent, M. and Pages, M. The maize abscisic acid-responsive protein RAB17 is located in the nucleus and interacts with nuclear-localization signals. Plant Cell 6 (1994) 351–360. http://dx.doi.org/10.1105/tpc.6.3.351 [Crossref]

  • [28] Robertson, M. and Chandler, P.M. A dehydrin cognate protein from pea (Pisum sativum L.) with an atypical pattern of expression. Plant Mol. Biol. 26 (1994) 805–816. http://dx.doi.org/10.1007/BF00028850 [Crossref]

  • [29] Kiyosue, T., Yamaguchi-Shinozaki, K., Shinozaki, K., Kamada, H. and Harada, H. cDNA cloning of Ecp40, an embryogenic-cell protein in carrot, and its expression during somatic and zygotic embryogenesis. Plant Mol. Biol. 21 (1993) 1053–1068. http://dx.doi.org/10.1007/BF00023602 [Crossref]

  • [30] Momma, M., Haraguchi, K., Saito, M., Chikuni, K. and Harada, K. Purification and characterization of the acid soluble 26-kDa polypeptide from soybean seeds. Biosci. Biotechnol. Biochem. 61 (1997) 1286–1291. http://dx.doi.org/10.1271/bbb.61.1286 [Crossref]

  • [31] Momma, M., Kaneko, S., Haraguchi, K. and Matsukura, U. Peptide mapping and assessment of cryoprotective activity of 26/27-kDa dehydrin from soybean seeds. Biosci. Biotechnol. Biochem. 67 (2003) 1832–1835. http://dx.doi.org/10.1271/bbb.67.1832 [Crossref]

  • [32] Nylander, M., Svensson, J., Palva, E.T. and Welin, B.V. Stress-induced accumulation and tissue-specific localisation of dehydrins in Arabidopsis thaliana. Plant Mol. Biol. 45 (2001) 263–279. http://dx.doi.org/10.1023/A:1006469128280 [Crossref]

  • [33] Bravo, L.A., Close, T.J., Corcuera, L.J. and Guy, C.L. Characterization of an 80-kDa dehydrin-like protein in barley responsive to cold acclimation. Physiol. Plant. 106 (1999) 177–183. http://dx.doi.org/10.1034/j.1399-3054.1999.106205.x [Crossref]

  • [34] Houde, M., Daniel, C., Lachapelle, M., Allard, F., Laliberte, S. and Sarhan, F. Immunolocalization of freezing-tolerance-associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. Plant J. 8 (1995) 583–593. http://dx.doi.org/10.1046/j.1365-313X.1995.8040583.x [Crossref]

  • [35] Danyluk, J., Perron, A., Houde, M., Limin, A., Fowler, B., Benhamou, N. and Sarhan, F. Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10 (1998) 623–638. http://dx.doi.org/10.1105/tpc.10.4.623 [Crossref]

  • [36] Godoy, J.A., Lunar, R., Torresschumann, S., Moreno, J., Rodrigo, R.M. and Pintortoro, J.A. Expression, tissue distribution and subcellular-localization of dehydrin Tas14 in salt-stressed tomato plants. Plant Mol. Biol. 26 (1994) 1921–1934. http://dx.doi.org/10.1007/BF00019503 [Crossref]

  • [37] Rorat, T., Grygorowicz, W.J., Irzykowski, W. and Rey, P. Expression of KS-type dehydrins is primarily regulated by factors related to organ type and leaf developmental stage under vegetative growth. Planta 218 (2004) 878–885. http://dx.doi.org/10.1007/s00425-003-1171-8 [Crossref]

  • [38] Rorat, T., Szabala, B.M., Grygorowicz, W.J., Wojtowicz, B., Yin, Z. and Rey, P. Expression of SK3-type dehydrin in transporting organs is associated with cold acclimation in Solanum species. Planta 224 (2006) 205–221. http://dx.doi.org/10.1007/s00425-005-0200-1 [Crossref]

  • [39] Koag, M-C., Fenton, R.D., Wilken, S. and Close, T.J. The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant. Physiol. 131 (2003) 309–316. http://dx.doi.org/10.1104/pp.011171

  • [40] Krüger, C., Berkowith, O., Stephan, U.W. and Hell, R. A metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricuinus communis L. J. Biol. Chem. 277 (2002) 25062–25062. http://dx.doi.org/10.1074/jbc.M201896200 [Crossref]

  • [41] Hara, M., Fujinaga, M. and Kuboi, T. Metal binding by citrus dehydrin with histidine-rich domains. J. Exp. Bot. 56 (2005) 2695–2703. http://dx.doi.org/10.1093/jxb/eri262 [Crossref]

  • [42] Hara, M., Fujinaga, M. and Kuboi, T. Radical scavenging activity and oxidative modification of citrus dehydrin. Plant. Physiol. Biol. 42 (2004) 657–662. http://dx.doi.org/10.1016/j.plaphy.2004.06.004 [Crossref]

  • [43] Hara, M., Terashima, S, Fukaya, T. and Kuboi, T. Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217 (2003) 290–298.

  • [44] Wisniewski, M., Webb, R., Balsamo, R., Close, T.J., Yu, X.M. and Griffith, M. Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: A dehydrin from peach (Prunus persica). Physiol. Plant. 105 (1999) 600–608. http://dx.doi.org/10.1034/j.1399-3054.1999.105402.x [Crossref]

  • [45] Rinne, P.L.H., Kaikuranta, P.L.M., van der Plas, L.H.W. and van der Schoot, C. Dehydrins in cold-acclimated apices of birch (Betula pubescens Ehrh.): production, localization and potential role in rescuing enzyme function during dehydration. Planta 209 (1999) 377–388. http://dx.doi.org/10.1007/s004250050740 [Crossref]

  • [46] Hara, M., Terashima, S. and Kuboi, T. Characterization and cryoprotective activity of cold-responsive dehydrin from Citrus unshiu. J. Plant. Physiol. 158 (2001) 1333–1339. http://dx.doi.org/10.1078/0176-1617-00600 [Crossref]

  • [47] Lang, V. and Palva, E.T. The expression of a RAB-related gene, RAB18, is induced by abscisic-acid during the cold-acclimation process of Arabidopsis thaliana (L) Heynh. Plant Mol. Biol. 20 (1992) 951–962. http://dx.doi.org/10.1007/BF00027165 [Crossref]

  • [48] Karlson, D.T., Fujino, T., Kimura, S., Baba, K., Itoh, T. and Ashworth, E.N. Novel plasmodesmata association of dehydrin-like proteins in cold acclimation red-osier dogwood (Cornus sericea). Tree Physiol. 23 (2003) 759–767. [Crossref]

  • [49] Schneider, K., Wells, B., Schmelzer, E., Salamini, F. and Bartels, D. Desiccation leads to the rapid accumulation of both cytosolic and chloroplastic proteins in the resurrection plant Craterostigma plantagineum Hochst. Planta 189 (1993) 120–131. http://dx.doi.org/10.1007/BF00201352 [Crossref]

  • [50] Egerton-Warburton, L.M., Balsamo, R.A. and Close, T.J. Temporal accumulation and ultrastructural localization of dehydrins in Zea mays. Physiol. Plant. 101 (1997) 545–555. http://dx.doi.org/10.1111/j.1399-3054.1997.tb01036.x [Crossref]

  • [51] Borovskii, G.B., Stupnikova, I.V., Antipina, A.I. and Voinikov, V.K. Accumulation of protein, immunochemically related to dehydrins in the mitochondria of cold treated plants. Dokl. Akad. Nauk 371 (2000) 251–254.

  • [52] Heyen, B.J., Alsheikh, M.K., Smith, E.A., Torvik, C.F., Seals, D.F. and Randall, S.K. The calcium-binding activity of a vacuole-associated, dehydrin-like protein is regulated by phosphorylation. Plant Physiol. 130 (2002) 675–687. http://dx.doi.org/10.1104/pp.002550 [Crossref]

  • [53] Asghar, R., Fenton, R.D., Demason, D.A. and Close, T.J. Nuclear and cytoplasmic localization of maize embryo and aleurone dehydrin. Protoplasma 177 (1994) 87–94. http://dx.doi.org/10.1007/BF01378983 [Crossref]

  • [54] Bracale, M., Levi, M., Savini, C., Dicorato, W. and Galli, M.G. Water deficit in pea root tips: Effects on the cell cycle and on the production of dehydrin-like proteins. Ann. Bot. 79 (1997) 593–600. http://dx.doi.org/10.1006/anbo.1996.0356 [Crossref]

  • [55] Jensen, A.B., Goday, A., Figueras, M., Jessop, A.C. and Pages, M. Phosphorylation mediates the nuclear targeting of the maize RAB17 protein. Plant J. 13 (1998) 691–697. http://dx.doi.org/10.1046/j.1365-313X.1998.00069.x [Crossref]

  • [56] Mundy, J. and Chua, N.H. Abscisic acid and water-stress induce the expression of a novel rice gene. Embo J. 7 (1988) 2279–2286.

  • [57] Neven, L., Haskell, G.D.W., Hofig, A., Li, Q.B. and Guy, C.L. Characterization of a spinach gene responsive to low-temperature and water-stress. Plant Mol. Biol. 21 (1993) 291–305. http://dx.doi.org/10.1007/BF00019945 [Crossref]

  • [58] Vilardell, J., Goday, A., Freire, M.A., Torrent, M., Martinez, M.C., Torne, J. M. and Pages, M. Gene, sequence, developmental regulation and protein phosphorylation of RAB17 in maize. Plant Mol. Biol. 14 (1990) 423–432. http://dx.doi.org/10.1007/BF00028778 [Crossref]

  • [59] Plana, M., Itarte, E., Eritja, R., Goday, A., Pages, M. and Martinez, M.C. Phosphorylation of maize RAB-17 protein by casein kinase-2. J. Biol. Chem. 266 (1991) 22510–22514.

  • [60] Alsheikh, M.K., Heyen, B.J., Randall, S.K. Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation. J. Biol. Chem. 278 (2003) 40882–40889. http://dx.doi.org/10.1074/jbc.M307151200 [Crossref]

  • [61] Golan-Goldhirsh, A., Peri, I., Birk, Y. and Smirnoff, P. Inflorescence bud proteins of Pistacia vera. Trees-Struct. Funct. 12 (1998) 415–419.

  • [62] Levi, A., Panta, G.R., Parmentier, C.M., Muthalif, M.M. Arora, R., Shanker, S. and Rowland, L.J. Complementary DNA cloning, sequencing and expression of an unusual dehydrin from blueberry floral buds. Physiol. Plant. 107 (1999) 98–109. http://dx.doi.org/10.1034/j.1399-3054.1999.100114.x [Crossref]

  • [63] Sarhan, F., Oullet, F. and Vazquez-Tello, A. The wheat wcs120 gene family: a useful model to understand the molecular genetics of freezing tolerance in cereals. Physiol. Plant. 101 (1997) 439–445. http://dx.doi.org/10.1111/j.1399-3054.1997.tb01019.x

  • [64] Ismail, A.M., Hall, A.E. and Close, T.J. Allelic variation of a dehydrin gene cosegregates with chilling tolerance during seedling emergence. Proc. Natl. Acad. Sci. U. S. A. 96 (1999b) 13566–13570. http://dx.doi.org/10.1073/pnas.96.23.13566 [Crossref]

  • [65] Whitsitt, M.S., Collins, R.G. and Mullet, J.E. Modulation of dehydration tolerance in soybean seedlings. Plant Physiol. 114 (1997) 917–925.

  • [66] Cellier, F., Conéjéro, G., Breitler, J-C. and Casse, F. Molecular and physiological responses to water deficit in drought-tolerant and drought-sensitive lines of sunflower. Plant Physiol. 116 (1998) 319–328. http://dx.doi.org/10.1104/pp.116.1.319 [Crossref]

  • [67] Ismail, A.M., Hall, A.E. and Close, T.J. Chilling tolerance during emergence of cowpea associate with a dehydrin and slow electrolyte leakage. Crop Sci. 37 (1997) 1270–1277. http://dx.doi.org/10.2135/cropsci1997.0011183X003700040041x [Crossref]

  • [68] Tabaei-Aghdaei, S.R., Harrison, P. and Pearce, R.S. Expression of dehydratio-stress-related genes in the crowns of wheatgresses species [Lophopyrum elongatum (Host) A. Love and Agropyron desertorum (Fisch. Ex Link.) Schult. having contrasting acclimation to salt, cold and drought. Plant Cell Environ. 23 (2000) 561–571. http://dx.doi.org/10.1046/j.1365-3040.2000.00572.x [Crossref]

  • [69] Zhu, B., Choi, D.W., Fenton, R. and Close, T.J. Expression of the barley dehydrin multigene family and the development of freezing tolerance. Mol. Gen. Genet. 264 (2000) 145–153. http://dx.doi.org/10.1007/s004380000299 [Crossref]

  • [70] Kaye, C., Neven, L., Hofig, A., Li, Q.B., Haskell, D. and Guy, C. Characterization of a gene for spinach CAP160 and expression of two spinach cold-acclimation proteins in tobacco. Plant Physiol. 116 (1998) 1367–1377. http://dx.doi.org/10.1104/pp.116.4.1367 [Crossref]

  • [71] Frank, W., Munnik, T., Kerkmann K., Salamini F. and Bartels D. Water deficit triggers phospholipase D activity in the resurrection plant Craterostigma plantagineum. Plant Cell 12 (2000) 111–123. http://dx.doi.org/10.1105/tpc.12.1.111 [Crossref]

  • [72] Munnik, T. Phosphatidic acid: an emerging plant lipid second messenger. Trends Plant Sci. 6 (2001) 227–233. http://dx.doi.org/10.1016/S1360-1385(01)01918-5 [Crossref]

  • [73] Cullis, P.R., Hope, M.J. and Tilcock C.P.S. Lipid polymorphism and the roles of lipids in membranes. Chem. Phys. Lipids 40 (1986) 127–144 http://dx.doi.org/10.1016/0009-3084(86)90067-8 [Crossref]

  • [74] Pearce, R.S. Extracellular ice and cell shape in frost-stressed cereals leaves: a low temperature scanning-electron microscopy study. Planta 175 (1988) 313–324. http://dx.doi.org/10.1007/BF00396336 [Crossref]

  • [75] Pearce, R.S. and Ashworth E.N. Cell shape and localization of ice in leaves of overwintering wheat during frost stress in the field. Planta 188 (1992) 324–331. http://dx.doi.org/10.1007/BF00192798 [Crossref]

  • [76] Welin, B.V., Olson, A., Nylander, M. and Palva, E.T. characterization and differential expression of DHN/LEA/RAB-like genes during cold-acclimation and drought stress in Arabidopsis thaliana. Plant Mol. Biol. 26 (1994) 131–144. http://dx.doi.org/10.1007/BF00039526 [Crossref]

  • [77] Houde, M., Danyluk, J., Laliberte, J.F., Rassart, E., Dhindsa, R.S. and Sarhan, F. Cloning, characterization, and expression of a cDNA encoding a 50-kilodalton protein specifically induced by cold-acclimation in wheat. Plant Physiol. 99 (1992) 1381–1387. http://dx.doi.org/10.1104/pp.99.4.1381 [Crossref]

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Yasemin Celik Altunoglu, Pinar Baloglu, Esra Nurten Yer, Sefa Pekol, and Mehmet Cengiz Baloglu
Plant Growth Regulation, 2016
[2]
Masakazu Hara, Shuhei Monna, Takae Murata, Taiyo Nakano, Shono Amano, Markus Nachbar, and Hermann Wätzig
Plant Science, 2016
[3]
G. Richard Strimbeck, Paul G. Schaberg, Carl G. Fossdal, Wolfgang P. Schröder, and Trygve D. Kjellsen
Frontiers in Plant Science, 2015, Volume 6
[4]
Itzell E. Hernández-Sánchez, Israel Maruri-López, Alejandro Ferrando, Juan Carbonell, Steffen P. Graether, and Juan F. Jiménez-Bremont
Frontiers in Plant Science, 2015, Volume 6
[5]
Jorge Gallardo-Cerda, L.A. Bravo, C. Atala, G. Vergara-Quezada, L.J. Corcuera, and M.A. Molina-Montenegro
South African Journal of Botany, 2015
[6]
Mohamed Magdy F. Mansour, Karima H. A. Salama, and Hasan Y. H. Allam
The Botanical Review, 2015
[7]
Pedro Perdiguero, Álvaro Soto, and Carmen Collada
Tree Genetics & Genomes, 2015, Volume 11, Number 4
[8]
Tomasz L. Mróz, Agnieszka Ziółkowska, Piotr Gawroński, Ewelina Pióro-Jabrucka, Sylwia Kacprzak, Magdalena Mazur, Stefan Malepszy, Grzegorz Bartoszewski, and T. Debener
Plant Breeding, 2015, Page n/a
[9]
Vítor da Silveira Falavigna, Yohanna Evelyn Miotto, Diogo Denardi Porto, Rafael Anzanello, Henrique Pessoa dos Santos, Flávio Bello Fialho, Márcia Margis-Pinheiro, Giancarlo Pasquali, and Luís Fernando Revers
Physiologia Plantarum, 2015, Page n/a
[10]
K. B. Ruiz, S. Biondi, E. A. Martínez, F. Orsini, F. Antognoni, and S.-E. Jacobsen
Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 2015, Page 1
[11]
Natalia Korotaeva, Anatolii Romanenko, Galina Suvorova, Maria V. Ivanova, Lidia Lomovatskaya, Gennadii Borovskii, and Victor Voinikov
Photosynthesis Research, 2015, Volume 124, Number 2, Page 159
[12]
JAVIER SÁNCHEZ-MARTÍN, JIM HEALD, ALISON KINGSTON-SMITH, ANA WINTERS, DIEGO RUBIALES, MARILUZ SANZ, LUIS A. J. MUR, and ELENA PRATS
Plant, Cell & Environment, 2015, Volume 38, Number 7, Page 1434
[13]
Sisi Liu, Zhuanfang Hao, Jianfeng Weng, Mingshun Li, Degui Zhang, Guangtang Pan, Shihuang Zhang, and Xinhai Li
Molecular Breeding, 2015, Volume 35, Number 1
[14]
Marta Fernández, Valentina Troncoso, and Sofia Valenzuela
Plant Molecular Biology Reporter, 2015
[15]
Nicola La Porta, Gaurav Sablok, Giovanni Emilliani, Ari M. Hietala, Alessio Giovannelli, Paolo Fontana, Emilio Potenza, and Paolo Baldi
Molecular Biotechnology, 2015, Volume 57, Number 5, Page 407
[16]
Manu Kumar, Sang-Choon Lee, Ji-Youn Kim, Soo-Jin Kim, San San Aye, and Seong-Ryong Kim
Journal of Plant Biology, 2014, Volume 57, Number 6, Page 383
[17]
Pavithra A Jyothi-Prakash, Bijayalaxmi Mohanty, Edward Wijaya, Tit-Meng Lim, Qingsong Lin, Chiang-Shiong Loh, and Prakash P Kumar
BMC Plant Biology, 2014, Volume 14, Number 1
[18]
K. Kosová, P. Vítámvás, I. Hlaváčková, M. O. Urban, E. Vlasáková, and I. T. Prášil
Biologia Plantarum, 2015, Volume 59, Number 1, Page 106
[19]
Cesar L. Cuevas-Velazquez, David F. Rendón-Luna, and Alejandra A. Covarrubias
Frontiers in Plant Science, 2014, Volume 5
[20]
Moez Hanin, Faïçal Brini, Chantal Ebel, Yosuke Toda, Shin Takeda, and Khaled Masmoudi
Plant Signaling & Behavior, 2011, Volume 6, Number 10, Page 1503
[22]
Ewa Marzena Kalemba, Agnieszka Bagniewska-Zadworna, and Ewelina Ratajczak
Journal of Plant Growth Regulation, 2015, Volume 34, Number 1, Page 137
[23]
P.-H. Peng, C.-H. Lin, H.-W. Tsai, and T.-Y. Lin
Plant and Cell Physiology, 2014, Volume 55, Number 9, Page 1623
[24]
A. Radwan, M. Hara, M. Kleinwächter, D. Selmar, and E. Flemetakis
Plant Biology, 2014, Volume 16, Number 5, Page 853
[25]
Klára Kosová, Pavel Vítámvás, and Ilja T. Prášil
Frontiers in Plant Science, 2014, Volume 5
[26]
Xinchao Wang, Xinyuan Hao, Chunlei Ma, Hongli Cao, Chuan Yue, Lu Wang, Jianming Zeng, and Yajun Yang
Tree Genetics & Genomes, 2014, Volume 10, Number 5, Page 1149
[27]
Jie Liu, Xiao Xu, Qian Xu, Shuhui Wang, and Jichen Xu
Plant Cell, Tissue and Organ Culture (PCTOC), 2014, Volume 118, Number 3, Page 391
[28]
Masakazu Hara, Saki Uchida, Takae Murata, and Hermann Wätzig
European Food Research and Technology, 2014, Volume 239, Number 2, Page 339
[29]
Rob C.A. Keller
International Journal of Molecular Sciences, 2011, Volume 12, Number 12, Page 5577
[30]
Bingru Huang, Michelle DaCosta, and Yiwei Jiang
Critical Reviews in Plant Sciences, 2014, Volume 33, Number 2-3, Page 141
[31]
Eiji Okuma, Rieko Nozawa, Yoshiyuki Murata, and Kenji Miura
Plant Signaling & Behavior, 2014, Volume 9, Number 3, Page e28085
[32]
Rafaela Ribeiro Reis, Bárbara Andrade Dias Brito da Cunha, Polyana Kelly Martins, Maria Thereza Bazzo Martins, Jean Carlos Alekcevetch, Antônio Chalfun-Júnior, Alan Carvalho Andrade, Ana Paula Ribeiro, Feng Qin, Junya Mizoi, Kazuko Yamaguchi-Shinozaki, Kazuo Nakashima, Josirley de Fátima Corrêa Carvalho, Carlos Antônio Ferreira de Sousa, Alexandre Lima Nepomuceno, Adilson Kenji Kobayashi, and Hugo Bruno Correa Molinari
Plant Science, 2014, Volume 221-222, Page 59
[33]
Bartosz Mieczyslaw Szabala, Sylwia Fudali, and Tadeusz Rorat
Planta, 2014, Volume 239, Number 4, Page 847
[34]
Weining Zhu, Linsheng Zhang, Hui Lv, Hongmei Zhang, Dapeng Zhang, Xiaoyu Wang, and Juan Chen
Functional & Integrative Genomics, 2014, Volume 14, Number 1, Page 111
[35]
K. Sasaki, N. K. Christov, S. Tsuda, and R. Imai
Plant and Cell Physiology, 2014, Volume 55, Number 1, Page 136
[36]
T. D. Kjellsen, I. A. Yakovlev, C. G. Fossdal, and G. R. Strimbeck
Tree Physiology, 2013, Volume 33, Number 12, Page 1354
[37]
Nemat M. Hassan, Zeinab M. El-Bastawisy, Ahamed K. El-Sayed, Heba T. Ebeed, and Mamdouh M. Nemat Alla
Journal of Advanced Research, 2015, Volume 6, Number 2, Page 179
[38]
Weining Zhu, Dapeng Zhang, Xuanxuan Lu, Linsheng Zhang, Zhengyang Yu, Hui Lv, and Hongmei Zhang
Plant Molecular Biology Reporter, 2014, Volume 32, Number 3, Page 664
[39]
Tomohiro Imamura, Atsumi Higuchi, and Hideyuki Takahashi
Plant Science, 2013, Volume 213, Page 55
[41]
Quentin Kaas and David J. Craik
Progress in Nuclear Magnetic Resonance Spectroscopy, 2013, Volume 71, Page 1
[42]
Mary E Mason, Jennifer L Koch, Marek Krasowski, and Judy Loo
Proteome Science, 2013, Volume 11, Number 1, Page 2
[44]
Il-Sup Kim, Hyun-Young Kim, Young-Saeng Kim, Han-Gu Choi, Sung-Ho Kang, and Ho-Sung Yoon
Applied Microbiology and Biotechnology, 2013, Volume 97, Number 20, Page 8997
[46]
Francine Lunardi Farias-Soares, Hernán Pablo Burrieza, Neusa Steiner, Sara Maldonado, and Miguel Pedro Guerra
Protoplasma, 2013, Volume 250, Number 4, Page 911
[47]
Daixi Li, Baolin Liu, Baisong Guo, Fei Xu, Chunsheng Yang, Chenglung Chen, Yan Zhang, and Zhen Zhai
Molecular Simulation, 2013, Volume 39, Number 2, Page 160
[48]
Marie-Pier Dubé, Yves Castonguay, Jean Cloutier, Josée Michaud, and Annick Bertrand
Theoretical and Applied Genetics, 2013, Volume 126, Number 3, Page 823
[49]
KETING CHEN, JENNY RENAUT, KJELL SERGEANT, HUI WEI, and RAJEEV ARORA
Plant, Cell & Environment, 2013, Volume 36, Number 4, Page 892
[51]
Aaron A. Santner, Carrie H. Croy, Farha H. Vasanwala, Vladimir N. Uversky, Ya-Yue J. Van, and A. Keith Dunker
Biochemistry, 2012, Volume 51, Number 37, Page 7250
[52]
Pedro Perdiguero, M. Carmen Barbero, M. Teresa Cervera, Álvaro Soto, and Carmen Collada
Planta, 2012, Volume 236, Number 6, Page 1863
[53]
Hernán Pablo Burrieza, María Paula López-Fernández, Tatiana Barroso Chiquieri, Vanildo Silveira, and Sara Maldonado
Plant Cell Reports, 2012, Volume 31, Number 12, Page 2139
[54]
Verena Isabelle Adolf, Sven-Erik Jacobsen, and Sergey Shabala
Environmental and Experimental Botany, 2013, Volume 92, Page 43
[55]
P. M. Barros, N. Goncalves, N. J. M. Saibo, and M. M. Oliveira
Tree Physiology, 2012, Volume 32, Number 9, Page 1113
[56]
Shannon K. Dillon, Jeremy T. Brawner, Roger Meder, David J. Lee, and Simon G. Southerton
New Phytologist, 2012, Volume 195, Number 3, Page 596
[57]
Carolina Gimiliani Lembke, Milton Yutaka Nishiyama, Paloma Mieko Sato, Rodrigo Fandiño de Andrade, and Glaucia Mendes Souza
Plant Molecular Biology, 2012, Volume 79, Number 4-5, Page 461
[58]
Dirk Wartenberg, Martin Vödisch, Olaf Kniemeyer, Daniela Albrecht-Eckardt, Kirstin Scherlach, Robert Winkler, Mirko Weide, and Axel A. Brakhage
Journal of Proteomics, 2012, Volume 75, Number 13, Page 4038
[59]
Zujun Yang, Tao Zhang, Guangrong Li, and Eviatar Nevo
Genetica, 2011, Volume 139, Number 11-12, Page 1429
[60]
Alexandra M. Livernois, Daniel J. Hnatchuk, Emma E. Findlater, and Steffen P. Graether
Analytical Biochemistry, 2009, Volume 392, Number 1, Page 70
[61]
C.-H. Lin, P.-H. Peng, C.-Y. Ko, A. H. Markhart, and T.-Y. Lin
Plant and Cell Physiology, 2012, Volume 53, Number 5, Page 930
[62]
V. E. Sofronova, T. Chr. Maximov, N. E. Korotaeva, G. G. Suvorova, M. V. Oskorbina, and G. B. Borovskii
Doklady Biological Sciences, 2012, Volume 443, Number 1, Page 113
[63]
Hernán P. Burrieza, Hans-Werner Koyro, Leandro Martínez Tosar, Ken Kobayashi, and Sara Maldonado
Plant and Soil, 2012, Volume 354, Number 1-2, Page 69
[64]
K. Kosová, P. Vítámvás, P. Prášilová, and I. T. Prášil
Biologia Plantarum, 2013, Volume 57, Number 1, Page 105
[65]
D. Trupiano, M. Rocco, G. Renzone, A. Scaloni, V. Viscosi, D. Chiatante, and G. S. Scippa
Annals of Botany, 2012, Volume 110, Number 2, Page 415
[66]
K. Chen and R. Arora
Environmental and Experimental Botany, 2013, Volume 94, Page 33
[67]
V. Vassileva, K. Demirevska, L. Simova-Stoilova, T. Petrova, N. Tsenov, and U. Feller
Journal of Agronomy and Crop Science, 2012, Volume 198, Number 2, Page 104
[68]
Joanne Wong Sak Hoi, Rémi Beau, and Jean-Paul Latgé
Fungal Genetics and Biology, 2012, Volume 49, Number 3, Page 210
[69]
Trygve D. Kjellsen, Liudmila Shiryaeva, Wolfgang P. Schröder, and G. Richard Strimbeck
Journal of Proteomics, 2010, Volume 73, Number 5, Page 965
[70]
A. E. Ochoa-Alfaro, M. Rodríguez-Kessler, M. B. Pérez-Morales, P. Delgado-Sánchez, C. L. Cuevas-Velazquez, G. Gómez-Anduro, and J. F. Jiménez-Bremont
Planta, 2012, Volume 235, Number 3, Page 565
[71]
Yves Castonguay, Marie-Pier Dubé, Jean Cloutier, Réal Michaud, Annick Bertrand, and Serge Laberge
Theoretical and Applied Genetics, 2012, Volume 124, Number 5, Page 809
[73]
Nancy L. Pruitt, Nasheed Moqueet, and Craig A. Shapiro
Cryobiology, 2007, Volume 54, Number 1, Page 125
[74]
Chang-Cai Liu, Chun-Ming Li, Bao-Guang Liu, Su-Jie Ge, Xiu-Mei Dong, Wei Li, Hang-Yong Zhu, Bai-Chen Wang, and Chuan-Ping Yang
Plant Molecular Biology Reporter, 2012, Volume 30, Number 4, Page 848
[75]
Gang Wang, Qingguo Zhu, Qingwei Meng, and Changai Wu
Acta Physiologiae Plantarum, 2012, Volume 34, Number 1, Page 107
[77]
Ewa Marzena Kalemba and Stanisława Pukacka
Journal of Plant Growth Regulation, 2012, Volume 31, Number 3, Page 351
[78]
Lin Cong, Hong-Chun Zheng, Yu-Xiu Zhang, and Tuan-Yao Chai
Plant Science, 2008, Volume 174, Number 2, Page 156
[79]
P. Mu, D. Feng, J. Su, Y. Zhang, J. Dai, H. Jin, B. Liu, Y. He, K. Qi, H. Wang, and J. Wang
Journal of Biochemistry, 2011, Volume 150, Number 5, Page 491
[80]
Upendra K. Singh Shekhawat, Lingam Srinivas, and Thumballi R. Ganapathi
Planta, 2011, Volume 234, Number 5, Page 915
[81]
Masakazu Hara, Yuri Shinoda, Masayuki Kubo, Daiju Kashima, Ikuo Takahashi, Takanari Kato, Tokumasa Horiike, and Toru Kuboi
Acta Physiologiae Plantarum, 2011, Volume 33, Number 6, Page 2103
[82]
B. Vornam, O. Gailing, J. Derory, C. Plomion, A. Kremer, and R. Finkeldey
Plant Biology, 2011, Volume 13, Number 6, Page 881
[83]
Longxing Hu, Zhaolong Wang, Hongmei Du, and Bingru Huang
Journal of Plant Physiology, 2010, Volume 167, Number 2, Page 103
[84]
Jesús Ángel Jiménez, Ana Alonso-Ramírez, and Carlos Nicolás
Journal of Plant Physiology, 2008, Volume 165, Number 17, Page 1798
[85]
Constantinos Prassinos, Stamatis Rigas, Dimosthenis Kizis, Antonia Vlahou, and Polydefkis Hatzopoulos
Journal of Proteomics, 2011, Volume 74, Number 5, Page 607
[86]
Klára Kosová, Pavel Vítámvás, and Ilja Tom Prášil
Plant Science, 2011, Volume 180, Number 1, Page 46
[87]
Xin Xing, Yukun Liu, Xiangpei Kong, Yang Liu, and Dequan Li
Plant Growth Regulation, 2011, Volume 65, Number 1, Page 109
[88]
Bianka Szalainé Ágoston, Dénes Kovács, Péter Tompa, and András Perczel
Biomolecular NMR Assignments, 2011, Volume 5, Number 2, Page 189
[89]
Ewa M. Kalemba and Stanisława Pukacka
Environmental and Experimental Botany, 2008, Volume 63, Number 1-3, Page 274
[90]
K. Vijayan, P.P. Srivastava, M.K. Raghunath, and B. Saratchandra
Scientia Horticulturae, 2011, Volume 129, Number 4, Page 511
[91]
Michaela Hundertmark, Julia Buitink, Olivier Leprince, and Dirk K. Hincha
Seed Science Research, 2011, Volume 21, Number 03, Page 165
[92]
Sylvain Legay, Isabelle Lefèvre, Didier Lamoureux, Carolina Barreda, Rosalina Tincopa Luz, Raymundo Gutierrez, Roberto Quiroz, Lucien Hoffmann, Jean-François Hausman, Merideth Bonierbale, Danièle Evers, and Roland Schafleitner
Functional & Integrative Genomics, 2011, Volume 11, Number 2, Page 275
[93]
K. Mochida, Y. Uehara-Yamaguchi, T. Yoshida, T. Sakurai, and K. Shinozaki
Plant and Cell Physiology, 2011, Volume 52, Number 5, Page 785
[94]
Tiago S. Balbuena, Joaquín J. Salas, Enrique Martínez-Force, Rafael Garcés, and Jay J. Thelen
Journal of Proteome Research, 2011, Volume 10, Number 5, Page 2330
[95]
F. Brini, A. Yamamoto, L. Jlaiel, S. Takeda, T. Hobo, H. Q. Dinh, T. Hattori, K. Masmoudi, and M. Hanin
Plant and Cell Physiology, 2011, Volume 52, Number 4, Page 676
[96]
N. A. Gumilevskaya and M. I. Azarkovich
Russian Journal of Plant Physiology, 2010, Volume 57, Number 6, Page 859
[97]
Jun-Bo Du, Shu Yuan, Yang-Er Chen, Xin Sun, Zhong-Wei Zhang, Fei Xu, Ming Yuan, Jing Shang, and Hong-Hui Lin
Acta Physiologiae Plantarum, 2011, Volume 33, Number 2, Page 567
[98]
Paolo Baldi, Luca Pedron, Ari M. Hietala, and Nicola La Porta
Tree Genetics & Genomes, 2011, Volume 7, Number 1, Page 79
[99]
Sarah Morran, Omid Eini, Tatiana Pyvovarenko, Boris Parent, Rohan Singh, Ainur Ismagul, Serik Eliby, Neil Shirley, Peter Langridge, and Sergiy Lopato
Plant Biotechnology Journal, 2011, Volume 9, Number 2, Page 230
[100]
Stephanie Hughes and Steffen P. Graether
Protein Science, 2011, Volume 20, Number 1, Page 42
[102]
A. S. Romanenko, G. B. Borovskii, I. V. Ukolova, and L. A. Lomovatskaya
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2010, Volume 4, Number 2, Page 162
[103]
Flora AbdulRahman Ismail, Lisette M. C. Nitsch, Mieke M. C. Wolters-Arts, Celestina Mariani, and Jan W. M. Derksen
Sexual Plant Reproduction, 2010, Volume 23, Number 2, Page 95
[104]
Eun-Sook Chung, Chang-Woo Cho, Kyoung-Mi Kim, and Jai-Heon Lee
Journal of Plant Biotechnology, 2009, Volume 36, Number 1, Page 38
[105]
Leila Heidarvand and Reza Maali Amiri
Acta Physiologiae Plantarum, 2010, Volume 32, Number 3, Page 419
[106]
Wilfried Rémus-Borel, Yves Castonguay, Jean Cloutier, Réal Michaud, Annick Bertrand, Réjean Desgagnés, and Serge Laberge
Theoretical and Applied Genetics, 2010, Volume 120, Number 6, Page 1163
[107]
Sylvain Legay, Didier Lamoureux, Jean-François Hausman, Lucien Hoffmann, and Danièle Evers
Plant Cell Reports, 2009, Volume 28, Number 12, Page 1799
[108]
Emma E. Findlater and Steffen P. Graether
Biomolecular NMR Assignments, 2009, Volume 3, Number 2, Page 273
[109]
[110]
Dominique Mingeot, Nicolas Dauchot, Pierre Van Cutsem, and Bernard Watillon
Molecular Biology Reports, 2009, Volume 36, Number 7, Page 1995
[111]
Vanda Šunderlíková, Ján Salaj, Dieter Kopecky, Terézia Salaj, Eva Wilhem, and Ildikó Matušíková
Plant Cell Reports, 2009, Volume 28, Number 7, Page 1011
[112]
MASAKAZU HARA, YURI SHINODA, YASUTAKA TANAKA, and TORU KUBOI
Plant, Cell & Environment, 2009, Volume 32, Number 5, Page 532
[113]
G. Jyothsnakumari, M. Thippeswamy, G. Veeranagamallaiah, and C. Sudhakar
Biologia Plantarum, 2009, Volume 53, Number 1, Page 145
[114]
Ewa M. Kalemba, Franciszek Janowiak, and Stanisława Pukacka
Trees, 2009, Volume 23, Number 2, Page 305
[115]
Jin Xu, Yu Xiu Zhang, Wei Wei, Lu Han, Zi Qiu Guan, Zi Wang, and Tuan Yao Chai
Molecular Biotechnology, 2008, Volume 38, Number 2, Page 91
[116]
Paramjit Khurana, Dalia Vishnudasan, and Anju K. Chhibbar
Physiology and Molecular Biology of Plants, 2008, Volume 14, Number 4, Page 277
[117]
A. Zamboni, L. Minoia, A. Ferrarini, G. B. Tornielli, E. Zago, M. Delledonne, and M. Pezzotti
Journal of Experimental Botany, 2008, Volume 59, Number 15, Page 4145
[118]
Witold Wachowiak, Peter A. Balk, and Outi Savolainen
Tree Genetics & Genomes, 2009, Volume 5, Number 1, Page 117
[119]
Ragnhild Lyngved, Jenny Renaut, Jean-François Hausman, Tor-Henning Iversen, and Anne Kathrine Hvoslef-Eide
Journal of Plant Growth Regulation, 2008, Volume 27, Number 4, Page 353
[120]
Xin Huang, Tongtong Xue, Silan Dai, Shupeng Gai, Chengchao Zheng, and Guosheng Zheng
Acta Physiologiae Plantarum, 2008, Volume 30, Number 6, Page 797
[121]
P. Carjuzaa, M. Castellión, A. J. Distéfano, M. del Vas, and S. Maldonado
Protoplasma, 2008, Volume 233, Number 1-2, Page 149
[122]
Igor A. Yakovlev, Daniel K. A. Asante, Carl Gunnar Fossdal, Jouni Partanen, Olavi Junttila, and Øystein Johnsen
Planta, 2008, Volume 228, Number 3, Page 459
[123]
S C González-Martínez, D Huber, E Ersoz, J M Davis, and D B Neale
Heredity, 2008, Volume 101, Number 1, Page 19
[124]
Xiaoqiu Du, Qiying Xiao, Ran Zhao, Feng Wu, Qijiang Xu, Kang Chong, and Zheng Meng
Development Genes and Evolution, 2008, Volume 218, Number 6, Page 281
[125]
[127]
Jin Xu, Yuxiu Zhang, Ziqiu Guan, Wei Wei, Lu Han, and Tuanyao Chai
Molecular Breeding, 2008, Volume 21, Number 4, Page 431
[128]
Roland Schafleitner, Raymundo Gutierrez, Ricardo Espino, Amelie Gaudin, José Pérez, Mariano Martínez, Alejandro Domínguez, Luz Tincopa, Carlos Alvarado, Giannina Numberto, and Merideth Bonierbale
Potato Research, 2007, Volume 50, Number 1, Page 71
[129]

Comments (0)

Please log in or register to comment.